山西省朔州市臧寨中学2021年高一数学文模拟试卷含解析_第1页
山西省朔州市臧寨中学2021年高一数学文模拟试卷含解析_第2页
山西省朔州市臧寨中学2021年高一数学文模拟试卷含解析_第3页
山西省朔州市臧寨中学2021年高一数学文模拟试卷含解析_第4页
山西省朔州市臧寨中学2021年高一数学文模拟试卷含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省朔州市臧寨中学2021年高一数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若将有理数集Q分成两个非空的子集M与N,且满足M∪N=Q,M∩N=?,M中的每一个元素都小于N中的每一个元素,则称(M,N)为有理数集的一个分割.试判断,对于有理数集的任一分割(M,N),下列选项中,不可能成立的是(

)A.M没有最大元素,N有一个最小元素B.M没有最大元素,N也没有最小元素C.M有一个最大元素,N有一个最小元素D.M有一个最大元素,N没有最小元素参考答案:C考点:交、并、补集的混合运算.专题:新定义.分析:M,N为一个分割,则一个为开区间,一个为半开半闭区间.从而M,N中,一个有最值,一个没有最值.解答:解:∵M,N为一个分割,∴M,N中,一个为开区间,一个为半开半闭区间.从而M,N中,一个有最值,一个没有最值.故M有一个最大元素,N有一个最小元素不可能成立.故选C.点评:本题考查交、并、补集的混合运算,是基础题.解题时要认真审题,注意新定义的合理运用.2.已知函数是R上的增函数,则a的取值范围是()A.﹣4≤a<0 B.a≤﹣2 C.﹣4≤a≤﹣2 D.a<0参考答案:C【考点】函数单调性的性质.【专题】转化思想;综合法;函数的性质及应用.【分析】由题意根据函数的单调性的性质可得,由此求得a的范围.【解答】解:函数是R上的增函数,则,求得﹣4≤a≤﹣2,故选:C.【点评】本题主要考查函数的单调性的性质,属于基础题.3.某三棱锥的三视图如图所示,则该三棱锥的体积是(

)

A.

B、

C、

D、1参考答案:B4.函数的图象可能是(

)参考答案:D5.函数在区间(2,3)上为单调函数,则实数a的取值范围是(

)A.(-∞,3]∪[4,+∞) B.(-∞,3)∪(4,+∞) C.(-∞,3] D.[4,+∞)参考答案:A二次函数开口向上,对称轴为,因为函数在区间上为单调函数,所以或,解得或,故选A.

6.定义在R上的奇函数,已知在区间(0,+∞)有3个零点,则函数在R上的零点个数为 A.5

B.6

C.7

D.8参考答案:C二次函数对称轴为,在区间上为减函数,所以7.函数f(x)=x2﹣4x+3的最小值是()A.3 B.0 C.﹣1 D.﹣2参考答案:C【考点】二次函数的性质.【分析】根据二次函数的性质求出函数的最小值即可.【解答】解:f(x)=x2﹣4x+3=(x﹣2)2﹣1≥﹣1,故f(x)的最小值是﹣1,故选:C.8.已知满足约束条件,则的最大值为(

)A.

B.

C.3

D.5参考答案:C略9.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北,现在沿该正方体的一条棱将正方体剪开、外面朝上展平,得到平面图形,则标“△”的面的方位是()A.南

B.北

C.西

D.下参考答案:B10.(4分)已知平面α内有无数条直线都与平面β平行,那么() A. α∥β B. α与β相交 C. α与β重合 D. α∥β或α与β相交参考答案:D考点: 平面与平面之间的位置关系.专题: 综合题.分析: 由题意平面α内有无数条直线都与平面β平行,利用空间两平面的位置关系的定义即可判断.解答: 解:由题意当两个平面平行时符合平面α内有无数条直线都与平面β平行,当两平面相交时,在α平面内作与交线平行的直线,也有平面α内有无数条直线都与平面β平行.故为D点评: 此题重点考查了两平面空间的位置及学生的空间想象能力.二、填空题:本大题共7小题,每小题4分,共28分11.已知点,.若直线上存在点P使得,则实数m的取值范围是______.参考答案:【分析】设出点的坐标为,由,可以转化为,根据平面向量数量积的坐标表示公式可得到一个关于的一元二次方程,只要该方程的判别式大于等于零即可,解不等式最后求出实数的取值范围.【详解】设直线上存在点使得,点的坐标为,则,因为,所以,由平面向量数量积的坐标表示公式可得,,,由题意可知该方程有实根,即,解得.【点睛】本题考查了直线相垂直的性质,考查了转化法、方程思想.12.已知函数,则函数的值域为______________参考答案:13.已知是边长为1的等边三角形,为边上一点,满足=

.参考答案:14.已知为等差数列,且,,则=

.参考答案:略15.已知数列{an}是正项数列,Sn是数列{an}的前n项和,且满足.若,Tn是数列{bn}的前n项和,则_______.参考答案:【分析】利用将变为,整理发现数列{}为等差数列,求出,进一步可以求出,再将,代入,发现可以裂项求的前99项和。【详解】当时,符合,当时,符合,【点睛】一般公式使用是将变为,而本题是将变为,给后面的整理带来方便。先求,再求,再求,一切都顺其自然。16.计算下列几个式子,结果为的序号是

.①tan25°+tan35°tan25°tan35°,②,③2(sin35°cos25°+sin55°cos65°),④.参考答案:①②③【考点】两角和与差的正切函数.【分析】先令tan60°=tan(25°+35°)利用正切的两角和公式化简整理求得tan25°+tan35°=(1﹣tan25°tan35°),整理后求得tan25°+tan35°+tan25°tan35°=;②中利用正切的两角和公式求得原式等于tan60°,结果为;③中利用诱导公式把sin55°转化才cos35°,cos65°转化为sin25°,进而利用正弦的两角和公式整理求得结果为,④中利用正切的二倍角公式求得原式等于,推断出④不符合题意.【解答】解:∵tan60°=tan(25°+35°)==∴tan25°+tan35°=(1﹣tan25°tan35°)∴tan25°+tan35°tan25°tan35°=,①符合═tan(45°+15°)=tan60°=,②符合2(sin35°cos25°+sin55°cos65°)=2(sin35°cos25°+cos35°sin25°)=2sin60°=,③符合=tan=,④不符合故答案为:①②③17.给出函数为常数,且,,无论a取何值,函数f(x)恒过定点P,则P的坐标是A.(0,1) B.(1,2) C.(1,3) D.参考答案:D试题分析:因为恒过定点,所以函数恒过定点.故选D.考点:指数函数的性质.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知tanα=3.(1)求tan(α+)的值;(2)求的值.参考答案:【考点】同角三角函数基本关系的运用.【分析】(1)由条件利用两角和的正切公式求得所给式子的值.(2)由条件利用同角三角函数的基本关系、二倍角的余弦公式求得所给式子的值.【解答】解:(1)∵tanα=3,∴tan(α+)===﹣2(2)∵tanα=3,∴====.19.在一次数学竞赛中,共出甲、乙、丙三题,在所有25个参加的学生中,每个学生至少解出一题;在所有没有解出甲题的学生中,解出乙题的人数是解出丙题的人数的2倍;只解出甲题的学生比余下的学生中解出甲题的学生的人数多1;只解出1题的学生中,有一半没有解出甲题.问共有多少学生只解出乙题?参考答案:分析:设解出甲、乙、丙三题的学生的集合分别是A,B,C,并用三个圆表示之,则重叠部分表示同时解出两题或三题的学生的集合其人数分别以a,b,c,d,e,f,g表示解析:由于每个学生至少解出一题,故a+b+c+d+e+f+g=25

①由于没有解出甲题的学生中,解出乙题的人数是解出丙题的人数的2倍,故b+f=2(c+f)

②由于只解出甲题的学生比余下的学生中解出甲题的学生的人数多1,故a=d+e+f+1

③由于只解出1题的学生中,有一半没有解出甲题,故a=b+c

④由②得:b=2c+f,

f=2cb

⑤以⑤代入①消去f得:a+2bc+d+e+f=25

⑥以③、④代入⑥得:2bc+2d+2e+2g=24

3b+d+e+g=25

⑧以2⑧⑦得:

4b+c=26

⑨∵c≥0,∴4b≤26,b≤6.利用⑤、⑨消去c,得f=b2(264b)=9b52,∵f≥0,∴9b≥52,

b≥.∵,∴b=6.即解出乙题的学生有6人.20.已知是关于x的方程x2﹣kx+k2﹣3=0的两个实根,且,求cosα+sinα的值.参考答案:【考点】7H:一元二次方程的根的分布与系数的关系;GG:同角三角函数间的基本关系.【分析】由根与系数关系得到=k,=1=k2﹣3,由后者解出k值,代入前等式,求出tanα的值.再由同角三角函数的基本关系求出角α的正弦与余弦值,代入求值.【解答】解:∵,∴k=±2,而,∴tanα>0,得,∴,有tan2α﹣2tanα+1=0,解得tanα=1,∴,有,∴.21.(本题满分12分)如图,在四棱锥中,底面是且边长为的菱形,侧面是等边三角形,且平面垂直于底面.(1)若为的中点,求证:平面;(2)求证:;(3)求二面角的大小.参考答案:略22.已知g(x)=﹣x2﹣3,f(x)=ax2+bx+c(a≠0),函数h(x)=g(x)+f(x)是奇函数.(1)求a,c的值;(2)当x∈[﹣1,2],b>0时,f(x)的最小值是1,求f(x)的解析式.参考答案:【考点】函数解析式的求解及常用方法;函数奇偶性的性质.【专题】计算题;分类讨论;待定系数法;函数的性质及应用.【分析】(1)由已知可得f(x)+g(x)=(a﹣1)x2+bx+c﹣3,由奇函数可得h(x)=﹣h(﹣x),比较系数可得a、c的方程组,解方程组可得;(2)由(1)可得f(x)=x2+bx+3,其图象对称轴为,分类讨论可得.【解答】解:(1)∵g(x)=﹣x2﹣3,f(x)=ax2+bx+c∴f(x)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论