版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
直线与圆的位置关系复习例1、在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,半径为r(1)⊙C与直线AB相离、相切,相交时r的取值。(2)⊙C与线段AB有交点,求r的取值。小结:直线和圆的位置关系:直线和圆的位置相交相切相离图形公共点个数圆心到直线距离
d与半径r的关系公共点名称直线名称210d<rd=rd>r交点切点无割线切线无O•drOl•drO
•dr1如图,⊙O切PB于点B,PB=4,PA=2,则⊙O的半径多少?2如图:PA,PC分别切圆O于点A,C两点,B为圆O上与A,C不重合的点,若∠P=50°,则∠ABC=___3.如图,∠APC=50°,PA、PC、DE都为⊙O的切线,则∠DOE为
。变式:改变切线DE的位置,则∠DOE=___F65°65°归纳:只要∠APC的大小不变.∠DOE也不变.例1、如图,由正方形ABCD的顶点A引一直线分别交BD、CD及BC的延长线于E、F、G,⊙O是△CGF的外接圆求证:CE是⊙O的切线。ABCDEFGO12345例2如图AB为⊙O的直径,D是弧BC的中点,DE⊥AC交AC的延长线于E,⊙O的切线BF交AD的延长线于F。(1)求证:DE是⊙O的切线。(2)若DE=3,⊙O的半径是5,求BD的长。G1如图:已知PA,PB分别切⊙O于A,B两点,如果∠P=60°,PA=2,那么AB的长为_____.2变式1:CD也与⊙O相切,切点为E.交PA于C点,交PB于D点,则△PCD的周长为____.4综合运用ECD变式2:改变切点E的位置(在劣弧AB上),则△PCD的周长为____.变式3:若PA=5则△PCD的周长为____.410变式4:若PA=a,则△PCD的周长为____.2a2.(2012•岳阳)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA/2;⑤∠DOC=90°,其中正确的是()A①②⑤B②③④C③④⑤D①④⑤3.如图,O是正方形ABCD的对角线BD上一点,⊙O与边AB,BC都相切,点E,F分别在AD,DC上,现将△DEF沿着EF对折,折痕EF与⊙O相切,此时点D恰好落在圆心O处.若DE=2,则正方形ABCD的边长是()A3B4CD4、如图,AB是半圆O的直径,C为半圆上一点,过C作半圆的切线,连接AC,作直线AD,使∠DAC=∠CAB,AD交半圆于E,交过C点的切线于点D.(1)试判断AD与CD有何位置关系,并说明理由;(2)若AB=10,AD=8,求AC的长.5.如图,⊙O的半径为2,点A的坐标为(2,2√3),直线AB为⊙O的切线,B为切点.则B点的坐标为___。三角形的内切圆问题如何在一个三角形中剪下一个圆,使得该圆的面积尽可能的大?思考名称确定方法图形性质外心内心三角形三边中垂线的交点三角形三条角平分线的交点(三角形外接圆的圆心)(三角形内切圆的圆心)1.OA=OB=OC;2.外心不一定在三角形的内部.1.到三边的距离相等;2.OA、OB、OC分别平分∠BAC、∠ABC、∠ACB;3.内心在三角形内部.练习1.如图⊿ABC中,∠C=90°,⊙O分别切AB、BC、AC于D、E、F,AD=5cm,BD=3cm,则⊿ABC的面积为______
ABCO三角形的外接圆:三角形的内切圆:ABCIOI特殊三角形外接圆、内切圆半径的求法:R=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年低利率借款合同范本大全
- 2024年代理贴牌代加工合同范本
- 2024年冲床来料加工厂合同范本
- 山东省多校2024-2025学年高二上学期期中联考英语试题(含解析无听力音频有听力原文)
- 传染病病禽的治疗和扑杀
- 违规募捐行为分类及法律问题分析报告 2024年11月修订
- 基础护理疼痛护理
- 中医科鼻炎治疗方案
- 三基基础护理基础知识
- 医疗文件的书写要求
- 餐厅小票打印模板
- 腹胀护理课件
- 【时代峰峻公司“养成系”偶像的营销策略研究案例报告8700字(论文)】
- 冰雪雕施工方案
- 非居民金融账户涉税信息尽职调查和信息报送制度
- 常见营养相关慢性疾病的营养指导
- 小学二年级心理快乐好心情课件
- 塔里木盆地主要地震反射波组的说明
- 装修施工图设计说明
- 法律文书字体格式
- 初中英语教学经验交流PPT教学课件
评论
0/150
提交评论