2017-2018版高中数学第二章解三角形1.2余弦定理(二)学案5_第1页
2017-2018版高中数学第二章解三角形1.2余弦定理(二)学案5_第2页
2017-2018版高中数学第二章解三角形1.2余弦定理(二)学案5_第3页
2017-2018版高中数学第二章解三角形1.2余弦定理(二)学案5_第4页
2017-2018版高中数学第二章解三角形1.2余弦定理(二)学案5_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学必求其心得,业必贵于专精学必求其心得,业必贵于专精PAGE14学必求其心得,业必贵于专精PAGE1.2余弦定理(二)学习目标1。熟练掌握余弦定理及其变形形式.2。会用余弦定理解三角形.3。能利用正弦、余弦定理解决有关三角形的恒等式化简、证明及形状判断等问题.知识点一已知两边及其中一边的对角解三角形思考在△ABC中,若B=30°,AB=2eq\r(3),AC=2,可以先用正弦定理eq\f(b,sinB)=eq\f(c,sinC)求出sinC=eq\f(\r(3),2).那么能不能用余弦定理解此三角形?如果能,怎么解?梳理已知两边及其一边的对角,既可先用正弦定理,也可先用余弦定理,满足条件的三角形个数为0,1,2,具体判断方法如下:设在△ABC中,已知a,b及A的值.由正弦定理eq\f(a,sinA)=eq\f(b,sinB),可求得sinB=eq\f(bsinA,a)。(1)当A为钝角时,则B必为锐角,三角形的解唯一;(2)当A为直角且a〉b时,三角形的解唯一;(3)当A为锐角时,如图,以点C为圆心,以a为半径作圆,三角形解的个数取决于a与CD和b的大小关系:①当a<CD时,无解;②当a=CD时,一解;③当CD<a〈b时,则圆与射线AB有两个交点,此时B为锐角或钝角,此时B的值有两个.④当a≥b时,一解.(4)如果a>b,则有A〉B,所以B为锐角,此时B的值唯一.知识点二判定三角形的形状思考1三角形的形状类别很多,按边可分为等腰三角形,等边三角形,其他;按角可分为钝角三角形,直角三角形,锐角三角形.在判断三角形的形状时是不是要一个一个去判定?思考2△ABC中,sin2A=sin2B.则A,B一定相等吗?梳理判断三角形形状,首先看最大角是钝角、直角还是锐角;其次看是否有相等的边(或角).在转化条件时要注意等价.知识点三证明三角形中的恒等式思考前面我们用正弦定理化简过acosB=bcosA,当时是把边化成了角;现在我们学了余弦定理,你能不能用余弦定理把角化成边?梳理证明三角恒等式的关键是借助边角互化减小等式两边的差异.类型一利用余弦定理解已知两边及一边对角的三角形引申探究例1条件不变,用正弦定理求c.例1已知在△ABC中,a=8,b=7,B=60°,求c.反思与感悟相对于用正弦定理解此类题,用余弦定理不必考虑三角形解的个数,解出几个是几个.跟踪训练1在△ABC中,角A、B、C所对的边分别为a、b、c,若A=eq\f(π,3),a=eq\r(3),b=1,则c等于()A.1 B.2C。eq\r(3)-1 D.eq\r(3)类型二利用正弦、余弦定理证明三角形中的恒等式例2在△ABC中,有(1)a=bcosC+ccosB;(2)b=ccosA+acosC;(3)c=acosB+bcosA,这三个关系式也称为射影定理,请给出证明.反思与感悟证明三角形中边角混合关系恒等式,可以考虑两种途径:一是把角的关系通过正弦、余弦定理转化为边的关系,正弦借助正弦定理转化,余弦借助余弦定理转化;二是通过正弦定理把边的关系转化为角的关系.跟踪训练2在△ABC中,a、b、c分别是角A、B、C的对边,求证:eq\f(cosB,cosC)=eq\f(c-bcosA,b-ccosA).类型三利用正弦、余弦定理判断三角形形状例3在△ABC中,已知(a+b+c)(b+c-a)=3bc,且sinA=2sinBcosC,试判断△ABC的形状.反思与感悟(1)判断三角形形状,往往利用正弦定理、余弦定理将边、角关系相互转化,经过化简变形,充分暴露边、角关系,继而作出判断.(2)在余弦定理中,注意整体思想的运用,如:b2+c2-a2=2bccosA,b2+c2=(b+c)2-2bc等等.跟踪训练3在△ABC中,若B=60°,2b=a+c,试判断△ABC的形状.1.在△ABC中,若b2=a2+c2+ac,则B等于()A.60° B.45°或135°C.120° D.30°2.在△ABC中,若2cosBsinA=sinC,则△ABC的形状一定是()A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形3.在△ABC中,若B=30°,AB=2eq\r(3),AC=2,则满足条件的三角形有几个?1.已知两边及其中一边的对角解三角形,一般情况下,利用正弦定理求出另一边所对的角,再求其他的边或角,要注意进行讨论.如果采用余弦定理来解,只需解一个一元二次方程,即可求出边来,比较两种方法,采用余弦定理较简单.2.根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.3.在余弦定理中,每一个等式均含有四个量,利用方程的观点,可以知三求一.4.利用余弦定理求三角形的边长时容易出现增解,原因是余弦定理中涉及的是边长的平方,通常转化为一元二次方程求正实数.因此解题时需特别注意三角形三边长度所应满足的基本条件.

答案精析问题导学知识点一思考能.在余弦定理b2=a2+c2-2accosB中,已知三个量AC=b,AB=c,cosB,代入后得到关于a的一元二次方程,解此方程即可.知识点二思考1不需要.如果所知条件方便求角,只需判断最大的角是钝角,直角,锐角;如果方便求边,假设最大边为c,可用a2+b2-c2来判断cosC的正负.而判断边或角是否相等则一目了然,不需多说.思考2∵A,B∈(0,π),∴2A,2B∈(0,2π),∴2A=2B或2A=π-2B,即A=B或A+B=eq\f(π,2).知识点三思考由余弦定理得aeq\f(a2+c2-b2,2ac)=beq\f(b2+c2-a2,2bc),去分母得a2+c2-b2=b2+c2-a2,化简得a=b。题型探究例1解由余弦定理b2=a2+c2-2accosB,得72=82+c2-2×8×ccos60°,整理得c2-8c+15=0,解得c=3或c=5.引申探究解由正弦定理,得eq\f(a,sinA)=eq\f(c,sinC)=eq\f(b,sinB)=eq\f(7,sin60°)=eq\f(14\r(3),3),∴sinA=eq\f(a,\f(14\r(3),3))=eq\f(4,7)eq\r(3),∴cosA=±eq\r(1-sin2A)=±eq\r(1-\b\lc\(\rc\)(\a\vs4\al\co1(\f(4\r(3),7)))2)=±eq\f(1,7).∴sinC=sin[π-(A+B)]=sin(A+B)=sinAcosB+cosAsinB=eq\f(4,7)eq\r(3)·eq\f(1,2)±eq\f(1,7)·eq\f(\r(3),2),∴sinC=eq\f(5\r(3),14)或sinC=eq\f(3\r(3),14).当sinC=eq\f(5\r(3),14)时,c=eq\f(14\r(3),3)·sinC=5;当sinC=eq\f(3\r(3),14)时,c=eq\f(14\r(3),3)·sinC=3.跟踪训练1B例2证明方法一(1)由正弦定理,得b=2RsinB,c=2RsinC,∴bcosC+ccosB=2RsinBcosC+2RsinCcosB=2R(sinBcosC+cosBsinC)=2Rsin(B+C)=2RsinA=a。即a=bcosC+ccosB.同理可证(2)b=ccosA+acosC;(3)c=acosB+bcosA.方法二(1)由余弦定理,得cosB=eq\f(a2+c2-b2,2ac),cosC=eq\f(a2+b2-c2,2ab),∴bcosC+ccosB=b·eq\f(a2+b2-c2,2ab)+c·eq\f(a2+c2-b2,2ac)=eq\f(a2+b2-c2,2a)+eq\f(a2+c2-b2,2a)=eq\f(2a2,2a)=a.∴a=bcosC+ccosB.同理可证(2)b=ccosA+acosC;(3)c=acosB+bcosA.跟踪训练2证明方法一左边=eq\f(\f(a2+c2-b2,2ac),\f(a2+b2-c2,2ab))=eq\f(ba2+c2-b2,ca2+b2-c2),右边=eq\f(c-b·\f(b2+c2-a2,2bc),b-c·\f(b2+c2-a2,2bc))=eq\f(ba2+c2-b2,ca2+b2-c2),∴等式成立.方法二右边=eq\f(2RsinC-2RsinBcosA,2RsinB-2RsinCcosA)=eq\f(sinA+B-sinBcosA,sinA+C-sinCcosA)=eq\f(sinAcosB,sinAcosC)=eq\f(cosB,cosC)=左边,∴等式成立.例3解由(a+b+c)(b+c-a)=3bc,得b2+2bc+c2-a2=3bc,即b2+c2-a2=bc,∴cosA=eq\f(b2+c2-a2,2bc)=eq\f(bc,2bc)=eq\f(1,2)。∵0〈A〈π,∴A=eq\f(π,3).又sinA=2sinBcosC。∴由正弦、余弦定理,得a=2b·eq\f(a2+b2-c2,2ab)=eq\f(a2+b2-c2,a),∴b2=c2,b=c,∴△ABC为等边三角形.跟踪训练3解方法一根据余弦定理,得b2=a2+c2-2accosB.∵B=60°,2b=a+c,∴eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+c,2)))2=a2+c2-2accos60°,整理得(a-c)2=0,∴a=c。又∵2b=a+c,∴2b=2c,即b=c。∴△ABC是等边三角形.方法二根据正弦定理,2b=a+c可转化为2sinB=sinA+sinC。又∵B=60°,∴A+C=120°,∴C=120°-A,∴2sin60°=sinA+sin(120°-A),A∈(0°,120°),整理得sin(A+30°)=1,A+30°∈(30°,150°),∴A+30°=90°,∴A=60°,C=60°.∴△ABC是等边三角形.当堂训练1.C2。C3.解设BC=a,AC=b,AB=c,由余弦定理得b2=a2+c2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论