版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
..2010/26.〔本小题满分12分/成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内〔元./受各种不确定因素影响,成本为a元/件〔a为常数,10≤a≤40,当月销量为x〔件时,每月还需缴纳x2元的附加费,设月利润为w外〔元〔利润
=
销售额-成本-附加费.〔1当x
=
1000时,y
=元/件,w内=元;〔2分别求出w内,w外与x间的函数关系式〔不必写x的取值范围;〔3当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?参考公式:抛物线的顶点坐标是.2011/26.<本小题满分12分>如图15,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t〔t>0秒,抛物线y=x2+bx+c经过点O和点P.已知矩形ABCD的三个顶点为A〔1,0、B〔1,-5、D〔4,0.⑴求c、b〔用含t的代数式表示;⑵当4<t<5时,设抛物线分别与线段AB、CD交于点M、N.①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;②求△MPN的面积S与t的函数关系式,并求t为何值时,S=;③在矩形ABCD的内部〔不含边界,把横、纵坐标都是整数的点称为"好点".若抛物线将这些"好点"分成数量相等的两部分,请直接写出t的取值范围.AADPO-1MNCBxy1图152012/26.〔12分如图1和2,在△ABC中,AB=13,BC=14,cos∠ABC=.探究:如图1,AH⊥BC于点H,则AH=,AC=,△ABC的面积S△ABC=;拓展:如图2,点D在AC上〔可与点A,C重合,分别过点A、C作直线BD的垂线,垂足为E,F,设BD=x,AE=m,CF=n〔当点D与点A重合时,我们认为S△ABD=0〔1用含x,m,n的代数式表示S△ABD及S△CBD;〔2求〔m+n与x的函数关系式,并求〔m+n的最大值和最小值;〔3对给定的一个x值,有时只能确定唯一的点D,指出这样的x的取值范围.发现:请你确定一条直线,使得A、B、C三点到这条直线的距离之和最小〔不必写出过程,并写出这个最小值.2013/26.〔本小题满分14分一透明的敞口正方体容器ABCD-A′B′C′D′装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α〔∠CBE=α,如图17-1所示.探究如图17-1,液面刚好过棱CD,并与棱BB′交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图17-2所示.解决问题:〔1CQ与BE的位置关系是___________,BQ的长是____________dm;〔2求液体的体积;〔参考算法:直棱柱体积V液=底面积SBCQ×高AB〔3求α的度数.<注:sin49°=cos41°=eq\f<3,4>,tan37°=eq\f<3,4>>拓展在图17-1的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出,图17-3或图17-4是其正面示意图.若液面与棱C′C或CB交于点P,设PC=x,BQ=y.分别就图17-3和图17-4求y与x的函数关系式,并写出相应的α的范围.延伸在图17-4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板〔厚度忽略不计,得到图17-5,隔板高NM=1dm,BM=CM,NM⊥BC.继续向右缓慢旋转,当α=60°时,通过计算,判断溢出容器的液体能否达到4dm3.2014/26〔本小题满分13分A<出口>C<景点>DBA<出口>C<景点>DB1号车2号车K<甲>图16-1A<出口>C<景点>DB1号车2号车图16-2图16-2探究:设行驶时间为t分〔1当0≤t≤s时,分别写出1号车,2号车在左半环线离出口A的路程y1,y2〔米与t〔分的函数关系式,并求出当两车相距的路程是400米时t的值;〔2t为何值时,1号车第三次恰好经过点C?,并直接写出这一段时间内它与2号车相遇过的次数。发现如图16-2,游客甲在BC上一点K〔不与点B,C重合处候车,准备乘车到出口A,设CK=x米。情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车;比较哪种情况用时较多?〔含候车时间决策已知游客乙在DA上从D向出口A走去,步行的速度是50米/分,当行进到DA上一点P〔不与D,A重合时,刚好与2号车相遇。〔1他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由;〔2设PA=s〔0<s<800米,若他想尽快到达出口A,根据s的大小,在等候乘1号车还是步行这两种方式中,他该如何选择?2015/图15-图15-1平面上,矩形ABCD与直径为QP的半圆K如图15-1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=OD=3,OP=2,OA=AB=1,让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为.发现:<1>当,即初始位置时,点P直线AB上.<填"在"或"不在">求当是多少时,OQ经过点B?<2>在OQ旋转过程中,简要说明是多少时,点P,A间的距离最小?并指出这个最小值;如图15-2,当点P恰好落在BC边上时,求及.图15-图15-2图15-3拓展:如图15-3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x<x>0>,用含x的代数式表示BN的长,并求x的取值范围.探究:当半圆K与矩形ABCD的边相切时,求sin的值.备用图备用图2016/26.<本小题满分12分>如图12.抛物线L:<常数t>0>与x轴从左到右的交点为B.A.过线段OA的中点M作MP⊥x轴.交双曲线<k>0.x>0>于点P.且OA·MP=12⑴求k值;⑵当t=1时.求AB长.并求直线MP与L对称轴之间的距离;⑶把L在直线MP左侧部分的图象<含与直线MP的交点>记为G.用t表示图象G最高点的坐标;⑷设L与双曲线有个交点的横坐标为.且满足.通过L位置随t变化的过程.直接写出t的取值范围图12图12SHAPE2017/26.〔12分某厂按用户的月需求量x〔件完成一种产品的生产,其中x>0,每件的售价为18万元,每件的成本y〔万元是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x〔件成反比,经市场调研发现,月需求量x与月份n〔n为整数,1≤n≤12,符合关系式x=2n2﹣2kn+9〔k+3〔k为常数,且得到了表中的数据.月份n〔月12成本y〔万元/件1112需求量x〔件/月120100〔1求y与x满足的关系式,请说明一件产品的利润能否是12万元;〔2求k,并推断是否存在某个月既无盈利也不亏损;〔3在这一年12个月中,若第m个月和第〔m+1个月的利润相差很大,求m.2018/26.〔11.00分〔2018•XX如图是轮滑场地的截面示意图,平台AB距x轴〔水平18米,与y轴交于点B,与滑道y=〔x≥1交于点A,且AB=1米.运动员〔看成点在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h〔米与飞出时间t〔秒的平方成正比,且t=1时h=5,M,A的水平距离是vt米.〔1求k,并用t表示h;〔2设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式〔不写x的取值范围,及y=13时运动员与正下方滑道的竖直距离;〔3若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.2019/26.〔12分如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x﹣b与y轴交于点B;抛物线L:y=﹣x2+bx的顶点为C,且L与x轴右交点为D.〔1若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;〔2当点C在l下方时,求点C与l距离的最大值;〔3设x0≠0,点〔x0,y1,〔x0,y2,〔x0,y3分别在l,a和L上,且y3是y1,y2的平均数,求点〔x0,0与点D间的距离;〔4在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为"美点",分别直接写出b=2019和b=2019.5时"美点"的个数.答案2010/26.解:〔114057500;〔2w内=x〔y-20-62500=x2+130x,w外=x2+〔150x.〔3当x==6500时,w内最大;分由题意得,解得a1=30,a2=270〔不合题意,舍去.所以a=30.〔4当x=5000时,w内=337500,w外=.若w内<w外,则a<32.5;若w内=w外,则a=32.5;若w内>w外,则a>32.5.所以,当10≤a<32.5时,选择在国外销售;当a=32.5时,在国外和国内销售都一样;当32.5<a≤40时,选择在国内销售.〔2011•XX26、如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以毎秒1个单位长的速度运动t秒〔t>0,抛物线y=x2+bx+c经过点O和点P,已知矩形ABCD的三个顶点为A〔1,0,B〔1,﹣5,D〔4,0.〔1求c,b〔用含t的代数式表示:〔2当4<t<5时,设抛物线分别与线段AB,CD交于点M,N.①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;②求△MPN的面积S与t的函数关系式,并求t为何值时,S=21〔3在矩形ABCD的内部〔不含边界,把横、纵坐标都是整数的点称为"好点".若抛物线将这些"好点"分成数量相等的两部分,请直接写出t的取值范围.考点:二次函数综合题。分析:〔1由抛物线y=x2+bx+c经过点O和点P,将点O与P的坐标代入方程即可求得c,b;〔2①当x=1时,y=1﹣t,求得M的坐标,则可求得∠AMP的度数,②由S=S四边形AMNP﹣S△PAM=S△DPN+S梯形NDAM﹣S△PAM,即可求得关于t的二次函数,列方程即可求得t的值;〔3根据图形,即可直接求得答案.解答:解:〔1把x=0,y=0代入y=x2+bx+c,得c=0,再把x=t,y=0代入y=x2+bx,得t2+bt=0,∵t>0,∴b=﹣t;〔2①不变.如图6,当x=1时,y=1﹣t,故M〔1,1﹣t,∵tan∠AMP=1,∴∠AMP=45°;②S=S四边形AMNP﹣S△PAM=S△DPN+S梯形NDAM﹣S△PAM=12〔t﹣4〔4t﹣16+12[〔4t﹣16+〔t﹣1]×3﹣12〔t﹣1〔t﹣1=32t解32t2﹣152t+6=得:t1=12,t2=9∵4<t<5,∴t1=12∴t=92〔372<t<11点评:此题考查了二次函数与点的关系,以及三角形面积的求解方法等知识.此题综合性很强,难度适中,解题的关键是注意数形结合与方程思想的应用.2012/26.〔12分如图1和2,在△ABC中,AB=13,BC=14,cos∠ABC=.探究:如图1,AH⊥BC于点H,则AH=12,AC=15,△ABC的面积S△ABC=84;拓展:如图2,点D在AC上〔可与点A,C重合,分别过点A、C作直线BD的垂线,垂足为E,F,设BD=x,AE=m,CF=n〔当点D与点A重合时,我们认为S△ABD=0〔1用含x,m,n的代数式表示S△ABD及S△CBD;〔2求〔m+n与x的函数关系式,并求〔m+n的最大值和最小值;〔3对给定的一个x值,有时只能确定唯一的点D,指出这样的x的取值范围.发现:请你确定一条直线,使得A、B、C三点到这条直线的距离之和最小〔不必写出过程,并写出这个最小值.[考点]GB:反比例函数综合题;KQ:勾股定理;T7:解直角三角形.[专题]16:压轴题.[分析]探究:先在直角△ABH中,由AB=13,cos∠ABC=,可得AH=12,BH=5,则CH=9,再解直角△ACH,即可求出AC的值,最后根据三角形的面积公式即可求出S△ABC的值;拓展:〔1由三角形的面积公式即可求解;〔2首先由〔1可得m=,n=,再根据S△ABD+S△CBD=S△ABC=84,即可求出〔m+n与x的函数关系式,然后由点D在AC上〔可与点A,C重合,可知x的最小值为AC边上的高,最大值为BC的长;〔3由于BC>BA,所以当以B为圆心,以大于且小于13为半径画圆时,与AC有两个交点,不符合题意,故根据点D的唯一性,分两种情况:①当BD为△ABC的边AC上的高时,D点符合题意;②当AB<BD≤BC时,D点符合题意;发现:由于AC>BC>AB,所以使得A、B、C三点到这条直线的距离之和最小的直线就是AC所在的直线.[解答]解:探究:在直角△ABH中,∵∠AHB=90°,AB=13,cos∠ABC=,∴BH=AB•cos∠ABC=5,AH=12,∴CH=BC﹣BH=9.在△ACH中,∵∠AHC=90°,AH=12,CH=9,∴AC=15,∴S△ABC=BC•AH=×14×12=84.故答案为12,15,84;拓展〔1由三角形的面积公式,得S△ABD=BD•AE=xm,S△CBD=BD•CF=xn;〔2由〔1得m=,n=,∴m+n=+=,∵AC边上的高为==,∴x的取值范围是≤x≤14.∵〔m+n随x的增大而减小,∴当x=时,〔m+n的最大值为15;当x=14时,〔m+n的最小值为12;〔3x的取值范围是x=或13<x≤14.发现:∵AC>BC>AB,∴过A、B、C三点到这条直线的距离之和最小的直线就是AC所在的直线,AC边上的高的长为.[点评]本题考查了解直角三角形,勾股定理,三角形的面积,反比例函数的性质等知识,综合性较强,有一定难度.2013/262014/262015/262016/262017/262018/2626.〔11.00分〔2018•XX如图是轮滑场地的截面示意图,平台AB距x轴〔水平18米,与y轴交于点B,与滑道y=〔x≥1交于点A,且AB=1米.运动员〔看成点在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h〔米与飞出时间t〔秒的平方成正比,且t=1时h=5,M,A的水平距离是vt米.〔1求k,并用t表示h;〔2设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式〔不写x的取值范围,及y=13时运动员与正下方滑道的竖直距离;〔3若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.[分析]〔1用待定系数法解题即可;〔2根据题意,分别用t表示x、y,再用代入消元法得出y与x之间的关系式;〔3求出甲距x轴1.8米时的横坐标,根据题意求出乙位于甲右侧超过4.5米的v乙.[解答]解:〔1由题意,点A〔1,18带入y=得:18=∴k=18设h=at2,把t=1,h=5代入∴a=5∴h=5t2〔2∵v=5,AB=1∴x=5t+1∵h=5t2,OB=18∴y=﹣5t2+18由x=5t+1则t=∴y=﹣当y=13时,13=﹣解得x=6或﹣4∵x≥1∴x=6把x=6代入y=y=3∴运动员在与正下方滑道的竖直距离是13﹣3=10〔米〔3把y=1.8代入y=﹣5t2+18得t2=解得t=1.8或﹣1.8〔负值舍去∴x=10∴甲坐标为〔10,1.8恰号落在滑道y=上此时,乙的坐标为〔1+1.8v乙,1.8由题意:1+1.8v乙﹣〔1+5×1.8>4.5∴v乙>7.5[点评]本题以考查二次函数和反比例函数的待定系数法以及函数图象上的临界点问题2019/26.[解答]解:〔1当x=0吋,y=x﹣b=﹣b,∴B〔0,﹣b,∵AB=8,而A〔0,b,∴b﹣〔﹣b=8,∴b=4.∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度摄影师与摄影棚运营方居间合同2篇
- 二零二五版社区配送订餐服务合同范本与社区管理协议3篇
- 二零二五年度酒店地毯绿色生产与环保认证合同3篇
- 二零二五年新能源充电桩建设运营合同样本3篇
- 二零二五版高端住宅项目全程代理销售合同3篇
- 二零二五版基因合成与生物技术知识产权转让合同3篇
- 二零二五版10月大型设备运输委托合同2篇
- 二零二五版广西事业单位聘用示范性合同模板12篇
- 2025年度出口货物环保认证服务合同3篇
- 二零二五年度腻子材料国际贸易代理合同2篇
- 纳米技术增强早期疾病生物标志物的检测
- 产品销量分析表折线图excel模板
- 办公设备(电脑、一体机、投影机等)采购 投标方案(技术方案)
- 【真题】2023年南京市中考语文试卷(含答案解析)
- 功率模块可靠性寿命评估与预测
- 案卷评查培训课件模板
- 湘教版七年级地理第一学期期末试卷分析
- 上海春季高考英语真题试题word精校版(含答案)
- “数”我精彩-“学”有特色-小学六年级数学寒假特色作业展示
- 牛津译林版八年级上册英语8A期末复习-阅读理解(含答案)
- 普通高等新郎接亲试卷(2022全国卷)
评论
0/150
提交评论