版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平行线的判定与性质的综合运用1.掌握平行线的性质和判定,理解平行线的性质和判定的区别.2.能熟练运用平行线的性质和判定作简单的推理.两直线平行{1.同位角相等2.内错角相等3.同旁内角互补性质判定1.由_________得到___________的结论是平行线的判定;请注意:2.由____________得到______________的结论是平行线的性质.用途:用途:角的关系两直线平行说明直线平行两直线平行
角相等或互补说明角相等或互补综合应用:ABCDEF1231、填空:
(1)、∵∠A=____,(已知)
AC∥ED,(_____________________)
(2)、∵AB∥______,(已知)∠2=∠4,(______________________)45(3)、___∥___,(已知)∠B=∠3.(___________
___________)
∠4同位角相等,两直线平行。DF两直线平行,内错角相等。ABDF两直线平行,同位角相等.判定性质
性质∴∴∴∵2.如图所示,下列推理正确的是(
)A.∵∠1=∠4,∴BC∥ADB.∵∠2=∠3,∴AB∥CDC.∵AD∥BC,∴∠BCD+∠ADC=180°D.∵∠1+∠2+∠C=180°,∴BC∥AD24BC13AD题组训练(1)3.如图,已知AB∥CD,四种说法其中正确的个数是(
)①∠A+∠B=180°;②∠B+∠C=180°;③∠C+∠D=180°;④∠D+∠A=180°A.1个
B.2个
C.3个
D.4个CDBA题组训练(1)解:∴∠2=∠3(等量代换)又∵∠C=∠D(已知)∴∠D=∠ABD(等量代换)∴DF∥AC(内错角相等,两直线平行)例1:如图,点E为DF上的点,点B为AC上的点,∠1=∠2,∠C=∠D,求证:DF∥AC321DEFABC∵∠1=∠2(已知)∠1=∠3(对顶角相等)∴BD∥CE(同位角相等,两直线平行)∴∠C=∠ABD(两直线平行,同位角相等)解:∴∠2=∠3(等量代换)又∵∠C=∠D(已知)∴∠D=∠ABD(等量代换)∴DF∥AC(内错角相等,两直线平行)思考1:如图,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C=∠D,试问:∠A与∠F相等吗?请说出你的理由。321DEFABC∵∠1=∠2(已知)∠1=∠3(对顶角相等)∴BD∥CE(同位角相等,两直线平行)∴∠C=∠ABD(两直线平行,同位角相等)∴∠A=∠F(两直线平行,内错角相等)解:又∵∠C=∠D(已知)∴∠D=∠ABD(两直线平行,内错角相等)∴BD∥CE(同位角相等,两直线平行)思考2:如图,已知∠A=∠F,∠C=∠D,求证:BD//CE.321DEFABC∴∠C=∠ABD(等量代换)∵∠A=∠F(已知)∴DF∥AC(内错角相等,两直线平行)例2:如图所示,已知:AE平分∠BAC,CE平分∠ACD,且AB∥CD.求证:∠1+∠2=90°.12ABCDEE思考一:
已知AB∥CD,GM,HM分别平分∠FGB,∠EHD,试判断GM与HM是否垂直?MGHFEDCBAMGHFEDCBA思考2:若已知GM,HM分别平分∠FGB,∠EHD,GM⊥HM,试判断AB与CD是否平行?探究提高1、
如下左图,从下列条件中(1)
AE平分∠BAC,(2)CE平分∠ACD(3)且AE⊥CE(4)AB∥CD,任选3个作为已知条件,另一个作为结论,编一道数学题,并说明理由。思考3
:已知AB∥CD,GP,HQ分别平分∠EGB,∠EHD,判断GP与HQ是否平行?BACDFEHGPQ思考4:已知AB∥CD,GP,HQ分别平分∠AGF,∠EHD,判断GP与HQ是否平行?BACDFEHGPQ解:∴∠BAD=∠ADC(两直线平行,内错角相等)又∵∠1=∠2(已知)∴∠E=∠F(两直线平行,内错角相等)∵AB∥CD(已知)∴AF∥DE(内错角相等,两直线平行)∴∠3=∠4(等式的性质)例3:如图,已知AB∥CD,
∠1=∠2,求证∠E=∠F.F1EDBA2C)(34思考1:如图,已知∠E=∠F,
∠1=∠2,求证AB∥CD.F1EDBA2C)(34思考2:如图,已知AB∥CD,
∠E=∠F,求证∠1=∠2.F1EDBA2C)(34思考3:如图,已知AB∥CD,AF∥DE,
求证∠1=∠2.F1EDBA2C)(34思考4:如图,已知∠1=∠2,AF∥DE,
求证AB∥CD.F1EDBA2C)(341.如图,已知AD⊥BC于D,EG⊥BC于G,∠E=∠1,那么AD是∠BAC的角平分线吗?试说明理由。
EBDC2AG1331题组训练(2)2.如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠AOB的大小关系,并对结论进行证明。
EB2AD34FC1题组训练(2)题组训练(3)下列五个判断,选其中的2个作为条件,另一个作为结论,正确的有几个?(1)a//b(2)b//c(3)a//c(4)a⊥c(5)b⊥c作业:.如图所示,已知AB∥CD,分别探
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 住宅转租合同范本
- 借款方式合同范本
- 影院公司合同范本
- 新高考数学二轮复习 易错点5比较大小(解析版)
- 马来西亚的运输合同范本
- 2024年度科学研究合同服务内容扩展
- 《四种Hp检测方法的对比分析》
- 《少数民族大学新生人格特质研究》
- 《三脏膏方治疗小儿咳嗽变异性哮喘(脾肾两虚证)的临床疗效观察》
- 高三学生自我总结范文
- 第9讲 物体的内能-2024-2025学年(浙教版)九年级上册《科学》期中期末题型复习讲义(解析版)
- 2024年职业病危害防治培训试题
- 国开《液压传动和气压传动》实验报告1-4
- 2020北京市统一医疗服务收费标准
- 2024年秋大作业:中华民族现代文明有哪些鲜明特质,建设中华民族现代文明的路径是什么?附答案(六篇集合)
- 智慧酒店解决方案白皮书
- 电子政务概论-形考任务5(在线测试权重20%)-国开-参考资料
- 人教版一年级上册《劳动教育》-全册课件
- 德语专业大学生职业生涯规划书
- 构美-空间形态设计学习通课后章节答案期末考试题库2023年
- 2023年高中学业水平合格考试英语词汇表完整版(复习必背)
评论
0/150
提交评论