




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.解析(1)由f(x)=xlnx,x>0,得f′(x)=lnx+1,令f′(x)=0,得x=eq\f(1,e).当x∈(0,eq\f(1,e))时,f′(x)<0,f(x)单调递减;当x∈(eq\f(1,e),+∞)时,f′(x)>0,f(x)单调递增.①当0<t<eq\f(1,e)<t+2,即0<t<eq\f(1,e)时,f(x)min=f(eq\f(1,e))=-eq\f(1,e);②当eq\f(1,e)≤t<t+2,即t≥eq\f(1,e)时,f(x)在[t,t+2]上单调递增,f(x)min=f(t)=tlnt.所以f(x)min=eq\b\lc\{(\a\vs4\al\co1(-\f(1,e),0<t<\f(1,e),,tlnt,t≥\f(1,e).))(2)问题等价于证明xlnx>eq\f(x,ex)-eq\f(2,e)(x∈(0,+∞)).由(1)可知f(x)=xlnx(x∈(0,+∞))的最小值是-eq\f(1,e),当且仅当x=eq\f(1,e)时取到.设m(x)=eq\f(x,ex)-eq\f(2,e)(x∈(0,+∞)),则m′(x)=eq\f(1-x,ex),由m′(x)<0得x>1时,m(x)为减函数,由m′(x)>0得0<x<1时,m(x)为增函数,易知m(x)max=m(1)=-eq\f(1,e),当且仅当x=1时取到.从而对一切x∈(0,+∞),xlnx≥-eq\f(1,e)≥eq\f(x,ex)-eq\f(2,e),两个等号不同时取到,即证对一切x∈(0,+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 绍兴职业技术学院《工程项目管理与工程伦理》2023-2024学年第二学期期末试卷
- 贵州机电职业技术学院《项目管理与预算》2023-2024学年第二学期期末试卷
- 宿州航空职业学院《俄语IV》2023-2024学年第二学期期末试卷
- 闽南理工学院《机器学习及医学图像分析》2023-2024学年第一学期期末试卷
- 长春中医药大学外科护理学考研冲刺题
- 吉林师范大学博达学院《高级日语二》2023-2024学年第二学期期末试卷
- 定西职业技术学院《应用统计学含实验》2023-2024学年第二学期期末试卷
- 安徽省示范高中皖北协作区2025届高三下学期第27届联考(一模)数学试题 含解析
- 西昌民族幼儿师范高等专科学校《合成生物学》2023-2024学年第二学期期末试卷
- 2025中型酒店转让合同范本
- 【一等奖课件】《刑事摄像技术》比赛课题:现场照相内容及方法
- 幼儿园大班社会活动《认识交通工具》课件
- 肺结核护理教案
- DL∕T 1084-2021 风力发电场噪声限值及测量方法
- 企业并购财务风险分析及控制
- 铝模工程劳务承包合同协议书
- 2024年高考数学1卷对高中数学教学的启发
- 2024年广西中考语文试卷真题(含官方答案及逐题解析)
- 2024年中国邮政集团有限公司校园招聘考试试题参考答案
- DZ∕T 0399-2022 矿山资源储量管理规范(正式版)
- 华为灰度管理法
评论
0/150
提交评论