版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题11导数中洛必达法则的应用【方法总结】在解决不等式恒(能)成立,求参数的取值范围这一类问题时,最常用的方法是最值分析法或参变分离法.用最值分析法常需要分类讨论,有时对参数进行讨论会很难.用参变分离法在求分离后函数的最值(值域)时会有些麻烦,如最值、极值在无意义点处,或趋于无穷.出现“eq\f(0,0)”或“eq\f(∞,∞)”型的代数式,就没法求其最值.解决此类问题的有效方法就是利用洛必达法则.“eq\f(0,0)”或“eq\f(∞,∞)”型的代数式,是大学数学中的不定式问题,洛必达法则法则1若函数f(x)和g(x)满足下列条件(1)eq\o(lim,\s\do4(x→a))
f(x)=0及eq\o(lim,\s\do4(x→a))g(x)=0;(2)在点a的某去心邻域内,f(x)与g(x)可导且g′(x)≠0;(3)eq\o(lim,\s\do4(x→a))eq\f(f′(x),g′(x))=A,那么eq\o(lim,\s\do4(x→a))eq\f(f(x),g(x))=eq\o(lim,\s\do4(x→a))eq\f(f′(x),g′(x))=A.法则2若函数f(x)和g(x)满足下列条件(1)eq\o(lim,\s\do4(x→a))f(x)=∞及eq\o(lim,\s\do4(x→a))g(x)=∞;(2)在点a的某去心邻域内,f(x)与g(x)可导且g′(x)≠0;(3)eq\o(lim,\s\do4(x→a))eq\f(f′(x),g′(x))=A,那么eq\o(lim,\s\do4(x→a))eq\f(f(x),g(x))=eq\o(lim,\s\do4(x→a))eq\f(f′(x),g′(x))=A.法则3若函数f(x)和g(x)满足下列条件:(1)eq\o(lim,\s\do4(x→∞))f(x)=0及eq\o(lim,\s\do4(x→∞))g(x)=0;(2)∃m≠0,f(x)和g(x)在(-∞,m)与(m,+∞)上可导,且g′(x)≠0;(3)eq\o(lim,\s\do4(x→∞))eq\f(f′(x),g′(x))=A.那么eq\o(lim,\s\do4(x→∞))eq\f(f(x),g(x))=eq\o(lim,\s\do4(x→∞))eq\f(f′(x),g′(x))=A.注意:(1)必达法则的功能是用于求极限值;(2)主要用于eq\f(0,0),eq\f(∞,∞)两种类型,其他结构需转化才能应用;(3)未定式可以连续应用,已定式不能再用.计算下列各题(1)eq\o(lim,\s\do4(x→0))eq\f(sinx,x);(2)eq\o(lim,\s\do4(x→0))xlnx;(3)eq\o(lim,\s\do4(x→1))(eq\f(1,x-1)-eq\f(1,lnx));(4)eq\o(lim,\s\do4(x→1))eq\f(x3-x2-x+1,x3-3x+2).解析(1)eq\o(lim,\s\do4(x→0))eq\f(sinx,x)=eq\o(lim,\s\do4(x→0))eq\f((sinx)′,x′)=eq\o(lim,\s\do4(x→0))eq\f(cosx,1)=1;(2)不适合条件,需转化eq\o(lim,\s\do4(x→0))xlnx=eq\o(lim,\s\do4(x→0))eq\f(lnx,eq\f(1,x))=eq\o(lim,\s\do4(x→0))eq\f(eq\f(1,x),-eq\f(1,x2))=eq\o(lim,\s\do4(x→0))(-x)=0;(3)eq\o(lim,\s\do4(x→1))(eq\f(1,x-1)-eq\f(1,lnx))=eq\o(lim,\s\do4(x→1))eq\f(lnx-x+1,(x-1)lnx)=eq\o(lim,\s\do4(x→1))eq\f(eq\f(1,x)-1,lnx+eq\f(x-1,x))=eq\o(lim,\s\do4(x→1))eq\f(eq\f(1,x)-1,lnx+1-eq\f(1,x))=eq\o(lim,\s\do4(x→1))eq\f(-eq\f(1,x2),eq\f(1,x)+eq\f(1,x2))=-eq\f(1,2);(4)eq\o(lim,\s\do4(x→1))eq\f(x3-x2-x+1,x3-3x+2)=eq\o(lim,\s\do4(x→1))eq\f(3x2-2x-1,3x2-3)=eq\o(lim,\s\do4(x→1))eq\f(6x-2,6x)=eq\f(2,3).注意:eq\o(lim,\s\do4(x→1))eq\f(6x-2,6x)为已定式,不能再用洛必达法则.【例题选讲】[例1](2011全国Ⅰ)已知函数f(x)=eq\f(alnx,x+1)+eq\f(b,x),曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.(1)求a,b的值;(2)如果当x>0,且x≠1时,f(x)>eq\f(lnx,x-1)+eq\f(k,x),求k的取值范围.解析(1)f′(x)=eq\f(a\b\lc\(\rc\)(\a\vs4\al\co1(\f(x+1,x)-lnx)),(x+1)2)-eq\f(b,x2).由于直线x+2y-3=0的斜率为-eq\f(1,2),且过点(1,1),故eq\b\lc\{\rc\(\a\vs4\al\co1(f(1)=1,,f′(1)=-\f(1,2),))即eq\b\lc\{\rc\(\a\vs4\al\co1(b=1,,\f(a,2)-b=-\f(1,2),))解得eq\b\lc\{\rc\(\a\vs4\al\co1(a=1,,b=1.))(2)方法一(最值分析法)由(1)知f(x)=eq\f(lnx,x+1)+eq\f(1,x),所以f(x)-eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(lnx,x-1)+\f(k,x)))=eq\f(1,1-x2)eq\b\lc\[\rc\](\a\vs4\al\co1(2lnx+\f((k-1)(x2-1),x))).令函数h(x)=2lnx+eq\f((k-1)(x2-1),x)(x>0),则h′(x)=eq\f((k-1)(x2+1)+2x,x2).①若k≤0,由h′(x)=eq\f(k(x2+1)-(x-1)2,x2)知,当x≠1时,h′(x)<0,h(x)递减.而h(1)=0,故当x∈(0,1)时,h(x)>0,可得eq\f(1,1-x2)h(x)>0;当x∈(1,+∞)时,h(x)<0,可得eq\f(1,1-x2)h(x)>0.从而当x>0,且x≠1时,f(x)-eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(lnx,x-1)+\f(k,x)))>0,即f(x)>eq\f(lnx,x-1)+eq\f(k,x).②若0<k<1.由于(k-1)(x2+1)+2x=(k-1)x2+2x+k-1的图象开口向下,且Δ=4-4(k-1)2>0,对称轴x=eq\f(1,1-k)>1,所以当x∈eq\b\lc\(\rc\)(\a\vs4\al\co1(1,\f(1,1-k)))时,(k-1)(x2+1)+2x>0,故h′(x)>0,而h(1)=0,故当x∈eq\b\lc\(\rc\)(\a\vs4\al\co1(1,\f(1,1-k)))时,h(x)>0,可得eq\f(1,1-x2)h(x)<0,与题设矛盾.③若k≥1,此时(k-1)(x2+1)+2x>0即h′(x)>0,而h(1)=0,故当x∈(1,+∞)时,h(x)>0,可得eq\f(1,1-x2)h(x)<0,与题设矛盾.综上,k的取值范围为(-∞,0].此方法在处理第(2)问时非常难想到,现利用洛必达法则处理如下:(2)方法二(参变分离法)由题设可得,当x>0,x1时,k<eq\f(2xlnx,1-x2)+1恒成立.令g(x)=eq\f(2xlnx,1-x2)+1(x>0,x≠1),则g′(x)=2·eq\f((x2+1)lnx-x2+1,(1-x2)2),再令h(x)=(x2+1)lnx-x2+1(x>0,x≠1),则h′(x)=2xlnx+eq\f(1,x)-x,h″(x)=2lnx+1-eq\f(1,x2),易知h″(x)=2lnx+1-eq\f(1,x2)在(0,+∞)上为增函数,且h″(1)=0.故当x∈(0,1)时,h″(x)<0,当x∈(1,+∞)时,h″(x)>0.∴h′(x)在(0,1)上为减函数,在(1,+∞)上为增函数,故h′(x)>h′(1)=0,∴h(x)在(0,+∞)上为增函数,又h(1)=0,∴当x∈(0,1)时,h(x)<0,当x∈(1,+∞)时,h(x)>0,∴当x∈(0,1)时,g′(x)<0,当x∈(1,+∞)时,g′(x)>0,∴g(x)在(0,1)上为减函数,在(1,+∞)上为增函数.由洛必达法则知eq\o(lim,\s\do4(x→1))g(x)=2eq\o(lim,\s\do4(x→1))eq\f(xlnx,1-x2)+1=2eq\o(lim,\s\do4(x→1))eq\f(1+lnx,-2x)+1=2×eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,2)))+1=0.∴k≤0,即k的取值范围为(-∞,0].[例2]解析方法一(最值分析法)f′(x)=2xlnx+x-2ax=x(2lnx+1-2a),因为x≥1,所以2lnx+1≥1,则当a≤eq\f(1,2)时,f′(x)=x(2lnx+1-2a)≥0,此时f(x)在[1,+∞)上单调递增,所以f(x)≥f(1)=0,此时f(x)≥0恒成立,所以a≤eq\f(1,2);当a>eq\f(1,2)时,由f′(x)=x(2lnx+1-2a)=0,得x=x0,且2lnx0+1-2a=0,x0=SKIPIF1<0,则x∈[1,SKIPIF1<0)时,f′(x)<0,则f(x)单调递减,x∈(SKIPIF1<0,+∞)时,f′(x)>0,则f(x)单调递增,f(x)min=f(SKIPIF1<0)=(SKIPIF1<0)2·eq\f(2a-1,2)-a[(SKIPIF1<0)2-1]=eq\b\lc\(\rc\)(\a\vs4\al\co1(a-\f(1,2)))e2a-1-a(e2a-1-1)=a-eq\f(e2a-1,2)=eq\f(e·2a-e2a,2e)<0.此时,f(x)≥0不成立.综上,a≤eq\f(1,2).方法二(参变分离法)由f(x)=x2lnx-a(x2-1)≥0,当x=1时,不等式成立,当x>1时,a≤eq\f(x2lnx,x2-1),令g(x)=eq\f(x2lnx,x2-1)(x>1),则g′(x)=eq\f(x(x2-1-2lnx),(x2-1)2),因为x>1,则(x2-1-2lnx)′=2x-eq\f(2,x)>0,故y=x2-1-2lnx在(1,+∞)上单调递增,则y=x2-1-2lnx>0,故g′(x)=eq\f(x(x2-1-2lnx),(x2-1)2)>0.所以g(x)在(1,+∞)上单调递增.则g(x)>g(1),由洛必达法则知eq\o(lim,\s\do4(x→1))eq\f(x2lnx,x2-1)=eq\o(lim,\s\do4(x→1))eq\f(2xlnx+x,2x)=eq\f(1,2).所以由a≤eq\f(x2lnx,x2-1)恒成立,则a≤eq\f(1,2).[例3]已知函数f(x)=(x+1)lnx-a(x-1),若当x∈(1,+∞)时,f(x)>0,求a的取值范围.解析方法一(最值分析法)由f(x)=(x+1)lnx-a(x-1),得f′(x)=lnx+eq\f(1,x)+1-a.(1)当1-a≥0,即a≤1时,f′(x)>0,所以f(x)在(1,+∞)上单调递增,所以f(x)>f(1)=0.(2)当a>1时,令g(x)=f′(x),则g′(x)=eq\f(x-1,x2)>0,所以g(x)在(1,+∞)上单调递增,于是f′(x)>f′(1)=2-a.①若2-a≥0,即1<a≤2时,f′(x)>0,于是f(x)在(1,+∞)上单调递增,于是f(x)>f(1)=0.②若2-a<0,即a>2时,存在x0∈(1,+∞),使得当1<x<x0时,f′(x)<0,于是f(x)在(1,x0)上单调递减,所以f(x)<f(1)=0,不符合题意.综上所述,a的取值范围是(-∞,2].方法二(参变分离法)当x∈(1,+∞)时,f(x)>0⇔a<eq\f((x+1)lnx,x-1).令H(x)=eq\f((x+1)lnx,x-1),则H′(x)=eq\f(\b\lc\(\rc\)(\a\vs4\al\co1(\f(x+1,x)+lnx))(x-1)-(x+1)lnx,(x-1)2)=eq\f(x-\f(1,x)-2lnx,(x-1)2),令K(x)=x-eq\f(1,x)-2lnx,则K′(x)=eq\f(x2-2x+1,x2)>0,于是K(x)在(1,+∞)上单调递增,所以K(x)>K(1)=0,于是H′(x)>0,从而H(x)在(1,+∞)上单调递增.由洛必达法则,可得eq\o(lim,\s\do4(x→1+))eq\f((x+1)lnx,x-1)=eq\o(lim,\s\do4(x→1+))eq\f(((x+1)lnx)′,(x-1)′)=eq\o(lim,\s\do4(x→1+))eq\f(1+\f(1,x)+lnx,1)=2,于是a≤2,所以a的取值范围是(-∞,2].[例4]已知函数f(x)=x(ex-1)-ax2(a∈R).(1)若f(x)在x=-1处有极值,求a的值.(2)当x>0时,f(x)≥0,求实数a的取值范围.解析(1)f′(x)=ex-1+xex-2ax=(x+1)ex-2ax-1,依题意知f′(-1)=2a-1=0,∴a=eq\f(1,2).(2)方法一(最值分析法)当x>0时,f(x)≥0,即x(ex-1)-ax2≥0,即ex-1-ax≥0,令φ(x)=ex-1-ax(x>0),则φ(x)min≥0,φ′(x)=ex-a.①当a≤1时,φ′(x)=ex-a>0,∴φ(x)在(0,+∞)上单调递增,∴φ(x)>φ(0)=0,∴a≤1满足条件.②当a>1时,若0<x<lna,则φ′(x)<0,若x>lna,则φ′(x)>0.∴φ(x)在(0,lna)上单调递减,在(lna,+∞)上单调递增,∴φ(x)min=φ(lna)=a-1-alna≥0.令g(a)=a-1-alna(a>1),∴g′(a)=1-(1+lna)=-lna<0,∴g(a)在(1,+∞)上单调递减.∴g(a)<g(1)=0与g(a)≥0矛盾,故a>1不满足条件,综上,实数a的取值范围是(-∞,1].方法二(参变分离法)当x>0时,f(x)≥0,即x(ex-1)-ax2≥0,即ex-1-ax≥0,即ax≤ex-1,即a≤eq\f(ex-1,x)恒成立,令h(x)=eq\f(ex-1,x)(x>0),∴h′(x)=eq\f(ex(x-1)+1,x2),令k(x)=ex(x-1)+1(x>0),∴k′(x)=ex·x>0,∴k(x)在(0,+∞)上单调递增,∴k(x)>k(0)=0,∴h′(x)>0,∴h(x)在(0,+∞)上单调递增.由洛必达法则知,eq\o(lim,\s\do4(x→0))h(x)=eq\o(lim,\s\do4(x→0))eq\f(ex-1,x)=eq\o(lim,\s\do4(x→0))ex=1,∴a≤1.故实数a的取值范围是(-∞,1].【对点训练】1.已知函数f(x)=(x+1)ln(x+1).若对任意x>0都有f(x)>ax成立,求实数a的取值范围.1.解析方法一(最值分析法)令φ(x)=f(x)-ax=(x+1)ln(x+1)-ax(x>0),则φ′(x)=ln(x+1)+1-a,∵x>0,∴ln(x+1)>0.由题意,当x>0且x≠1时,f(x)>eq\f(lnx,x-1)+eq\f(k,x)恒成立等价于k<eq\f(xlnx,x+1)+1-eq\f(xlnx,x-1)=eq\f(2xlnx,1-x2)+1,记g(x)=eq\f(2xlnx,1-x2)+1,则g′(x)=eq\f(2x2+1lnx+21-x2,1-x22)=eq\f(2x2+1,1-x22)eq\b\lc\(\rc\)(\a\vs4\al\co1(lnx+\f(1-x2,x2+1)));又记h(x)=lnx+eq\f(1-x2,x2+1),则h′(x)=eq\f(1,x)-eq\f(4x,1+x22)=eq\f(1-x22,x1+x22)>0,所以,当x>0时,h′(x)≥0,h(x)在(0,+∞)上单调递增,且h(1)=0,因此,当x∈(0,1)时,h(x)<0,当x∈(1,+∞)时,h(x)>0;即当x∈(0,1)时,g′(x)<0,当x∈(1,+∞)时,g′(x)>0;所以g(x)在(0,1)上单调递减,在(1,+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度智能制造股权投资顾问服务合同
- 2025年度解除劳动合同企业合规操作流程模板
- 2025年度老旧小区改造项目装修公司与物业协同服务合同
- 2025年度股权代持协议书:文化产业股权代持与版权合作合同
- 环保验收报告(共10篇)
- 2025年中国樟木箱行业市场全景监测及投资策略研究报告
- 2025年中国免疫诊断行业市场前瞻与投资战略规划分析报告
- 2025年高压化成箔项目评估报告
- 2025年中国微特电机制造行业市场调查研究及投资前景预测报告
- 2025年百变书柜行业深度研究分析报告
- (新版)工业机器人系统操作员(三级)职业鉴定理论考试题库(含答案)
- 教育环境分析报告
- 人力资源服务公司章程
- (正式版)CB∕T 4552-2024 船舶行业企业安全生产文件编制和管理规定
- 病案管理质量控制指标检查要点
- 2024年西藏中考物理模拟试题及参考答案
- 九型人格与领导力讲义
- 人教版五年级上册数学脱式计算练习200题及答案
- 卵巢黄体囊肿破裂教学查房
- 医院定岗定编
- 2023年大学物理化学实验报告化学电池温度系数的测定
评论
0/150
提交评论