版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年黎明职业大学高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.已知D、E、F分别是△ABC的边BC、CA、AB的中点,且,则下列命题中正确命题的个数为(
)
①;
②
③;
④
A.1
B.2
C.3
D.4
答案:C2.向量a=(2,-1,4)与b=(-1,1,1)的夹角的余弦值为______.答案:∵a•b=-2-1+4=1,|a|=22+1+42=21,|b|=3.∴cos<a,b>=a•b|a|
|b|=121•3=721.故为721.3.两封信随机投入A、B、C三个空邮箱,则A邮箱的信件数ξ的数学期望Eξ=______;答案:由题意知ξ的取值有0,1,2,当ξ=0时,即A邮箱的信件数为0,由分步计数原理知两封信随机投入A、B、C三个空邮箱,共有3×3种结果,而满足条件的A邮箱的信件数为0的结果数是2×2,由古典概型公式得到ξ=0时的概率,同理可得ξ=1时,ξ=2时,ξ=3时的概率p(ξ=0)=2×29=49,p(ξ=1)=C12C129=49,p(ξ=2)=19,∴Eξ=0×49+1×49+2×19=23故为:23.4.如图,弯曲的河流是近似的抛物线C,公路l恰好是C的准线,C上的点O到l的距离最近,且为0.4千米,城镇P位于点O的北偏东30°处,|OP|=10千米,现要在河岸边的某处修建一座码头,并修建两条公路,一条连接城镇,一条垂直连接公路l,以便建立水陆交通网.
(1)建立适当的坐标系,求抛物线C的方程;
(2)为了降低修路成本,必须使修建的两条公路总长最小,请给出修建方案(作出图形,在图中标出此时码头Q的位置),并求公路总长的最小值(精确到0.001千米)答案:(1)过点O作准线的垂线,垂足为A,以OA所在直线为x轴,OA的垂直平分线为y轴,建立平面直角坐标系…(2分)由题意得,p2=0.4…(4分)所以,抛物线C:y2=1.6x…(6分)(2)设抛物线C的焦点为F由题意得,P(5,53)…(8分)根据抛物线的定义知,公路总长=|QF|+|QP|≥|PF|≈9.806…(12分)当Q为线段PF与抛物线C的交点时,公路总长最小,最小值为9.806千米…(16分)5.若向量a=(4,2,-4),b=(6,-3,2),则(2a-3b)•(a+2b)=______.答案:∵2a-3b=(-10,13,-14),a+2b=(16,-4,0)∴(2a-3b)•(a+2b)=-10×16+13×(-4)=-212故为-2126.将命题“正数a的平方大于零”改写成“若p,则q”的形式,并写出它的逆命题、否命题与逆否命题.答案:原命题可以写成:若a是正数,则a的平方大于零;逆命题:若a的平方大于零,则a是正数;否命题:若a不是正数,则a的平方不大于零;逆否命题:若a的平方不大于零,则a不是正数.7.运用三段论推理:
复数不可以比较大小,(大前提)
2010和2011都是复数,(小前提)
2010和2011不可以比较大小.(结
论)
该推理是错误的,产生错误的原因是______错误.(填“大前提”或“小前提”)答案:根据三段论推理,是由两个前提和一个结论组成,大前提:复数不可以比较大小,是错误的,该推理是错误的,产生错误的原因是大前提错误.故为:大前提8.已知向量=(1,2),=(2,x),且=-1,则x的值等于()
A.
B.
C.
D.答案:D9.点P(x,y)是椭圆2x2+3y2=12上的一个动点,则x+2y的最大值为______.答案:把椭圆2x2+3y2=12化为标准方程,得x26+y24=1,∴这个椭圆的参数方程为:x=6cosθy=2sinθ,(θ为参数)∴x+2y=6cosθ+4sinθ,∴(x+2y)max=6+16=22.故为:22.10.函数y=2x的值域为______.答案:因为:x≥0,所以:y=2x≥20=1.∴函数y=2x的值域为:[1,+∞).故为:[1,+∞).11.如图,正六边形ABCDEF中,=()
A.
B.
C.
D.
答案:D12.(理)某单位有8名员工,其中有5名员工曾经参加过一种或几种技能培训,另外3名员工没有参加过任何技能培训,现要从8名员工中任选3人参加一种新的技能培训;
(I)求恰好选到1名曾经参加过技能培训的员工的概率;
(Ⅱ)这次培训结束后,仍然没有参加过任何技能培训的员工人数X是一个随机变量,求X的分布列和数学期望.答案:(I)由题意知本题是一个等可能事件的概率,∵试验发生包含的事件是从8人中选3个,共有C83=56种结果,满足条件的事件是恰好选到1名曾经参加过技能培训的员工,共有C51C32=15∴恰好选到1名已参加过其他技能培训的员工的概率P=1556(II)随机变量X可能取的值是:0,1,2,3.P(X=0)=156P(X=1)=1556P(X=2)=1528P(X=3)=C35C38=528∴随机变量X的分布列是X0123P15615561528528∴X的数学期望是1×1556+2×
1528+3×528=15813.三棱锥P-ABC中,M为BC的中点,以为基底,则可表示为()
A.
B.
C.
D.答案:D14.函数y=5x,x∈N+的值域是()A.RB.N+C.ND.{5,52,53,54,…}答案:解析:因为函数y=5x,x∈N+的定义域为正整数集N+,所以当自变量x取1,2,3,4,…时,其相应的函数值y依次是5,52,53,54,….因此,函数y=5x,x∈N+的值域是{5,52,53,54,…}.故选D.15.直线L1:x-y=0与直线L2:x+y-10=0的交点坐标是()
A.(5,5)
B.(5,-5)
C.(-1,1)
D.(1,1)答案:A16.球的表面积与它的内接正方体的表面积之比是()A.π3B.π4C.π2D.π答案:设:正方体边长设为:a则:球的半径为3a2所以球的表面积S1=4?π?R2=4π34a2=3πa2而正方体表面积为:S2=6a2所以比值为:S1S2=π2故选C17.8的值为()
A.2
B.4
C.6
D.8答案:B18.点(1,1)在圆(x-a)2+(y+a)2=4的内部,则a的取值范围是(
)
A.-1<a<1
B.0<a<1
C.a<-1或a>1
D.a=±1答案:A19.某公司一年购买某种货物400吨,每次都购买x吨,运费为4万元/次,一年的总存储费用为4x万元,要使一年的总运费与总存储费用之和最小,则x=______吨.答案:某公司一年购买某种货物400吨,每次都购买x吨,则需要购买400x次,运费为4万元/次,一年的总存储费用为4x万元,一年的总运费与总存储费用之和为400x?4+4x万元,400x?4+4x≥2(400x×4)×4x=160,当且仅当1600x=4x即x=20吨时,等号成立即每次购买20吨时,一年的总运费与总存储费用之和最小.故为:20.20.在⊙O中,弦AB=1.8cm,圆周角∠ACB=30°,则⊙O的直径等于()
A.3.2cm
B.3.4cm
C.3.6cm
D.4.0cm答案:C21.若矩阵M=1111,则直线x+y+2=0在M对应的变换作用下所得到的直线方程为______.答案:设直线x+y+2=0上任意一点(x0,y0),(x',y')是所得的直线上一点,[1
1][x']=[x0][1
1][y']=[y0]∴x′+y′=x0x′+y′=y0,∴代入直线x+y+2=0方程:(x'+y')+x′+y'+2=0得到I的方程x+y+1=0故为:x+y+1=0.22.如图,F1,F2分别为椭圆x2a2+y2b2=1的左、右焦点,点P在椭圆上,△POF2是面积为3的正三角形,则b2的值是______.答案:∵△POF2是面积为3的正三角形,∴S=34|PF2|2=3,|PF2|=2.∴c=2,∵△PF1F2为直角三角形,∴a=3+1,故为23.23.在复平面内,记复数3+i对应的向量为OZ,若向量OZ饶坐标原点逆时针旋转60°得到向量OZ所对应的复数为______.答案:向量OZ饶坐标原点逆时针旋转60°得到向量所对应的复数为(3+i)(cos60°+isin60°)=(3+i)(12+32i)=2i,故为2i.24.点B是点A(1,2,3)在坐标平面yOz内的正投影,则|OB|等于()
A.
B.
C.
D.答案:B25.如果随机变量ξ~N(0,σ2),且P(-2<ξ≤0)=0.4,则P(ξ>2)等于()
A.0.1
B.0.2
C.0.3
D.0.4答案:A26.(几何证明选讲选做题)如图,△ABC的外角平分线AD交外接圆于D,BD=4,则CD=______.答案:∵A、B、C、D共圆,∴∠DAE=∠BCD.又∵CD=CD,∴∠DAC=∠DBC.而∠DAE=∠DAC,∴∠DBC=∠DCB.∴CD=BD=4.故为4.27.某班有40名学生,其中有15人是共青团员.现将全班分成4个小组,第一组有学生10人,共青团员4人,从该班任选一个学生代表.在选到的学生代表是共青团员的条件下,他又是第一组学生的概率为()A.415B.514C.14D.34答案:由于所有的共青团员共有15人,而第一小组有4人是共青团员,故在选到的学生代表是共青团员的条件下,他又是第一组学生的概率为415,故选A.28.如果命题P:∅∈{∅},命题Q:∅⊂{∅},那么下列结论不正确的是()A.“P或Q”为真B.“P且Q”为假C.“非P”为假D.“非Q”为假答案:命题P:∅∈{∅},命题Q:∅⊂{∅},可直接看出命题Q,命题P都是正确的.故“P或Q”为真.“P且Q”为真.“非P”为假.“非Q”为假.故选B.29.已知两个力F1,F2的夹角为90°,它们的合力大小为20N,合力与F1的夹角为30°,那么F1的大小为()A.103NB.10
NC.20
ND.102N答案:设向F1,F2的对应向量分别为OA、OB以OA、OB为邻边作平行四边形OACB如图,则OC=OA+OB,对应力F1,F2的合力∵F1,F2的夹角为90°,∴四边形OACB是矩形在Rt△OAC中,∠COA=30°,|OC|=20∴|OA|=|OC|cos30°=103故选:A30.在直角三角形ABC中,∠ACB=90°,CD、CE分别为斜边AB上的高和中线,且∠BCD与∠ACD之比为3:1,求证CD=DE.
答案:证明:∵∠A+∠ACD=∠A+∠B=90°,∴∠ACD=∠B又∵CE是直角△ABC的斜边AB上的中线∴CE=EB∠B=∠ECB,∠ACD=∠ECB但∵∠BCD=3∠ACD,∠ECD=2∠ACD=12∠ACB=12×90°=45°,△EDC为等腰直角三角形∴CE=DE.31.O是正六边形ABCDE的中心,且OA=a,OB=b,AB=c,在以A,B,C,D,E,O为端点的向量中:
(1)与a相等的向量有
______;
(2)与b相等的向量有
______;
(3)与c相等的向量有
______.答案:如图,在O是正六边形ABCDE的中心,以A,B,C,D,E,O为端点的向量中(1)与a相等的向量有EF,DO,CB;(2)与b相等的向量有DC,EO,FA;(3)与c相等的向量有FO,OC,ED.故三个空依次应填EF,DO,CB;DC,EO,FA;FO,OC,ED.32.用数学归纳法证明不等式:1n+1n+1+1n+2+…+1n2>1(n∈N*且n.1).答案:证明:(1)当n=2时,左边=12+13+14=1312>1,∴n=2时成立(2分)(2)假设当n=k(k≥2)时成立,即1k+1k+1+1k+2+…+1k2>1那么当n=k+1时,左边=1k+1+1k+2+1k+3+…+1(k+1)2=1k+1k+1+1k+2+1k+3+…+1k2+2k+1(k+1)2-1k>1+1k2+1+1k2+2+…+1(k+1)2-1k>1+(2k+1)•1(k+1)2-1k>1+k2-k-1k2+2k+1>1∴n=k+1时也成立(7分)根据(1)(2)可得不等式对所有的n>1都成立(8分)33.已知f(x)=,求不等式x+(x+2)·f(x+2)≤5的解集。答案:解:原不等式等价于或解得或即故不等式的解集为。34.附加题选做题B.(矩阵与变换)
设矩阵A=m00n,若矩阵A的属于特征值1的一个特征向量为10,属于特征值2的一个特征向量为01,求实数m,n的值.答案:由题意得m00n10=110,m00n01=201,…6分化简得m=10?n=00?m=0n=2所以m=1n=2.…10分35.如图,O是正方形ABCD对角线的交点,四边形OAED,OCFB都是正方形,在图中所示的向量中:
(1)与AO相等的向量有
______;
(2)写出与AO共线的向量有
______;
(3)写出与AO的模相等的向量有
______;
(4)向量AO与CO是否相等?答
______.答案:(1)与AO相等的向量有BF(2)与AO共线的向量有DE,CO,BF(3)与AO的模相等的向量有DE,
DO,AE,CO,CF,BF,BO(4)模相等,方向相反故AO与CO不相等36.在空间坐标中,点B是A(1,2,3)在yOz坐标平面内的射影,O为坐标原点,则|OB|等于()
A.
B.
C.2
D.答案:B37.离心率e=23,短轴长为85的椭圆标准方程为______.答案:离心率e=23,短轴长为85,所以ca=23;b=45又a2=b2+c2解得a2=144,b2=80所以椭圆标准方程为x2144+y280=1或y2144+x280=1故为x2144+y280=1或y2144+x280=138.已知直线过点A(2,0),且平行于y轴,方程:|x|=2,则(
)
A.l是方程|x|=2的曲线
B.|x|=2是l的方程
C.l上每一点的坐标都是方程|x|=2的解
D.以方程|x|=2的解(x,y)为坐标的点都在l上答案:C39.要证明,可选择的方法有以下几种,其中最合理的是()
A.综合法
B.分析法
C.反证法
D.归纳法答案:B40.已知定点A(2,0),圆O的方程为x2+y2=8,动点M在圆O上,那么∠OMA的最大值是()
A.
B.
C.arccos
D.arccos答案:B41.用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设为()
A.a,b,c中至少有两个偶数
B.a,b,c中至少有两个偶数或都是奇数
C.a,b,c都是奇数
D.a,b,c都是偶数答案:B42.若回归直线方程中的回归系数b=0时,则相关系数r=______.答案:由于在回归系数b的计算公式中,与相关指数的计算公式中,它们的分子相同,故为:0.43.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…,用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则下图与故事情节相吻合的是()
A.
B.
C.
D.
答案:B44.(几何证明选讲选选做题)如图,圆的两条弦AC、BD相交于P,弧AB、BC、CD、DA的度数分别为60°、105°、90°、105°,则PAPC=______.答案:连接AB,CD∵弧AB、CD、的度数分别为60°、90°,∴弦AB的长度等于半径,弦CD的长度等于半径的2倍,即ABCD=12,∵∠A=∠D,∠C=∠B,∴△ABP∽△CDP∴ABCD=PAPC∴PAPC=12=22,故为:2245.下列赋值语句中正确的是()
A.m+n=3
B.3=i
C.i=i2+1
D.i=j=3答案:C46.设椭圆=1(a>b>0)的离心率为,右焦点为F(c,0),方程ax2+bx-c=0的两个实根分别为x1和x2,则点P(x1,x2)()
A.必在圆x2+y2=2内
B.必在圆x2+y2=2上
C.必在圆x2+y2=2外
D.以上三种情形都有可能答案:A47.根据给出的程序语言,画出程序框图,并计算程序运行后的结果.
答案:程序框图:模拟程序运行:当j=1时,n=1,当j=2时,n=1,当j=3时,n=1,当j=4时,n=2,…当j=8时,n=2,…当j=11时,n=2,当j=12时,此时不满足循环条件,退出循环程序运行后的结果是:2.48.已知直线l1:3x-y+2=0,l2:3x+3y-5=0,则直线l1与l2的夹角是______.答案:因为直线l1的斜率为3,故倾斜角为60°,直线l2的斜率为-3,倾斜角为120°,故两直线的夹角为60°,即两直线的夹角为π3,故为
π3.49.右图程序运行后输出的结果为()
A.3456
B.4567
C.5678
D.6789
答案:A50.过抛物线y2=4x的焦点作一条直线与抛物线相交于A、B两点,它们的横坐标之和等于5,则这样的直线()
A.有且仅有一条
B.有且仅有两条
C.有无穷多条
D.不存在答案:B第2卷一.综合题(共50题)1.某市为研究市区居民的月收入调查了10000人,并根据所得数据绘制了样本的频率分布直方图(如图).
(Ⅰ)求月收入在[3000,3500)内的被调查人数;
(Ⅱ)估计被调查者月收入的平均数(同一组中的数据用该组区间的中点值作代表).
答案:(I)10000×0.0003×500=1500(人)∴月收入在[3000,3500)内的被调查人数1500人(II).x=1250×0.1+1750×0.2+2250×0.25+2750×0.25+3250×0.15+3750×0.05=2400∴估计被调查者月收入的平均数为24002.直线l1:a1x+b1y+1=0直线l2:a2x+b2y+1=0交于一点(2,3),则经过A(a1,b1),B(a2,b2)两点的直线方程为______.答案:∵直线l1:a1x+b1y+1=0直线l2:a2x+b2y+1=0交于一点(2,3),∴2a1+3b1+1=0,2a2+3b2+2=0.∴A(a1,b1),B(a2,b2)两点都在直线2x+3y+1=0上,由于两点确定一条直线,因此经过A(a1,b1),B(a2,b2)两点的直线方程即为2x+3y+1=0.故为:2x+3y+1=0.3.对于函数f(x),在使f(x)≤M成立的所有常数M中,我们把M的最小值称为函数f(x)的“上确界”则函数f(x)=(x+1)2x2+1的上确界为()A.14B.12C.2D.4答案:因为f(x)=(x+1)2x2+1=x2+2x+1x2+1=1+2xx2+1又因为x2+1=|x|2+1≥2|x|≥2x∴2xx2+1≤1.∴f(x)≤2.即在使f(x)≤M成立的所有常数M中,M的最小值为2.故选C.4.已知a=0.80.7,b=0.80.9,c=1.20.8,则a、b、c按从小到大的顺序排列为
______.答案:由指数函数y=0.8x知,∵0.7<0.9,∴0.80.9<0.80.7<1,即b<a,又c=1.20.8>1,∴b<a<c.b<a<c5.如图,△ABC中,AD=2DB,AE=3EC,CD与BE交于F,若AF=xAB+yAC,则()A.x=13,y=12B.x=14,y=13C.x=37,y=37D.x=25,y=920答案:过点F作FM∥AC、FN∥AB,分别交AB、AC于点M、N∵FM∥AC,∴FMAC=DMAD且FMAE=BMAB∵AD=2DB,AE=3EC,∴AD=23AB,AE=34AC.由此可得AM=13AB同理可得AN=12AC∵四边形AMFN是平行四边形∴由向量加法法则,得AF=13AB+12AC∵AF=xAB+yAC,∴根据平面向量基本定理,可得x=13,y=12故选:A6.已知{x1,x2,x3,…,xn}的平均数是2,则3x1+2,3x2+2,…,3xn+2的平均数=_______.答案:∵x1,x2,x3,…,xn的平均数是2即(x1+x2+x3+…+xn)÷n=2∴3x1+2,3x2+2,…,3xn+2的平均数为(3x1+2+3x2+2+…+3xn+2)÷n=[3(x1+x2+x3+…+xn)+2n]÷n=3×2+2=8故为:87.给定两个长度为1的平面向量OA和OB,它们的夹角为90°.如图所示,点C在以O为圆心的圆弧AB上变动,若OC=xOA+yOB,其中x,y∈R,则xy的范围是______.答案:由OC=xOA+yOB?OC2=x2OA2+y2OB2+2xyOA?OB,又|OC|=|OA|=|OB|=1,OA?OB=0,∴1=x2+y2≥2xy,得xy≤12,而点C在以O为圆心的圆弧AB上变动,得x,y∈[0,1],于是,0≤xy≤12,故为[0,12].8.已知复数z满足(1-i)•z=1,则z=______.答案:∵复数z满足(1-i)•z=1,∴z=11-i=1+i(1-i)(1+i)=12+12i,故为12+i2.9.棱长为1的正方体ABCD-A1B1C1D1的8个顶点都在球O的表面上,E,F分别是棱AA1,DD1的中点,则直线EF被球O截得的线段长为()
A.
B.1
C.1+
D.答案:D10.已知矩形ABCD,R、P分别在边CD、BC上,E、F分别为AP、PR的中点,当P在BC上由B向C运动时,点R在CD上固定不变,设BP=x,EF=y,那么下列结论中正确的是()A.y是x的增函数B.y是x的减函数C.y随x先增大后减小D.无论x怎样变化,y是常数答案:连接AR,如图所示:由于点R在CD上固定不变,故AR的长为定值又∵E、F分别为AP、PR的中点,∴EF为△APR的中位线,则EF=12AR为定值故无论x怎样变化,y是常数故选D11.底面直径和高都是4cm的圆柱的侧面积为______cm2.答案:∵圆柱的底面直径和高都是4cm,∴圆柱的底面圆的周长是2π×2=4π∴圆柱的侧面积是4π×4=16π,故为:16π.12.已知:a={2,-3,1},b={2,0,-2},c={-1,-2,0},r=2a-3b+c,
则r的坐标为______.答案:∵a=(2,-3,1),b=(2,0,-2),c=(-1,-2,0)∴r=2a-
3b+c=2(2,-3,1)-3(2,0,-2)+(-1,-2,0)=(4,-6,2)-(6,0,-6)+(-1,-2,0)=(-3,-8,8)故为:(-3,-8,8)13.已知等差数列{an}的前n项和为Sn,若向量OB=a100OA+a101OC,且A、B、C三点共线(该直线不过点O),则S200等于______.答案:由题意可知:向量OB=a100OA+a101OC,又∵A、B、C三点共线,则a100+a101=1,等差数列前n项的和为Sn=(a1+an)?n
2,∴S200=(a1+a200)×200
2=(a100+
a101)×2002=100,故为100.14.参数方程中当t为参数时,化为普通方程为(
)。答案:x2-y2=115.给出以下变量①吸烟,②性别,③宗教信仰,④国籍,其中属于分类变量的有______.答案:①因为吸烟不是分类变量,是否吸烟才是分类变量,其他②③④属于分类变量.故为:②③④.16.向量b与a=(2,-1,2)共线,且a•b=-18,则b的坐标为______.答案:因为向量b与a=(2,-1,2)共线,所以设b=ma,因为且a•b=-18,所以ma2=-18,因为|a|=22+1+22=3,所以m=-2.所以b=ma=-2(2,-1,2)=(-4,2,-4).故为:(-4,2,-4).17.已知:如图,CD是⊙O的直径,AE切⊙O于点B,DC的延长线交AB于点A,∠A=20°,则
∠DBE=______.答案:连接BC,∵CD是⊙O的直径,∴∠CBD=90°,∵AE是⊙O的切线,∴∠DBE=∠1,∠2=∠D;又∵∠1+∠D=90°,即∠1+∠2=90°---(1),∠A+∠2=∠1----(2),(1)-(2)得∠1=55°即∠DBE=55°.故为:∠DBE=55°.18.已知抛物线C:x2=2py(p>0)的焦点为F,抛物线上一点A的横坐标为x1(x1>0),过点A作抛物线C的切线l1交x轴于点D,交y轴于点Q,交直线l:y=p2于点M,当|FD|=2时,∠AFD=60°.
(1)求证:△AFQ为等腰三角形,并求抛物线C的方程;
(2)若B位于y轴左侧的抛物线C上,过点B作抛物线C的切线l2交直线l1于点P,交直线l于点N,求△PMN面积的最小值,并求取到最小值时的x1值.答案:(1)设A(x1,x122p),则A处的切线方程为l1:y=x1px-x122p,可得:D(x12,0),Q(0,-x212p)∴|FQ|=p2+x212p=|AF|;∴△AFQ为等腰三角形.由点A,Q,D的坐标可知:D为线段AQ的中点,∴|AF|=4,得:p2+x212p=4x21+p2=16∴p=2,C:x2=4y.(2)设B(x2,y2)(x2<0),则B处的切线方程为y=x22x-x224联立y=x22x-x224y=x12x-x214得到点P(x1+x22,x1x24),联立y=x12x-x214y=1得到点M(x12+2x1,1).同理N(x22+2x2,1),设h为点P到MN的距离,则S△=12|MN|•h=12×(x12+2x1-x22-2x2)(1-x1x24)=(x2-x1)(4-x1x2)216x1x2
①设AB的方程为y=kx+b,则b>0,由y=kx+bx2=4y得到x2-4kx-4b=0,得x1+x2=4kx1x2=-4b代入①得:S△=16k2+16b(4+4b)264b=(1+b)2k2+bb,要使面积最小,则应k=0,得到S△=(1+b)2bb②令b=t,得S△(t)=(1+t2)2t=t3+2t+1t,则S′△(t)=(3t2-1)(t2+1)t2,所以当t∈(0,33)时,S(t)单调递减;当t∈(33,+∞)时,S(t)单调递增,所以当t=33时,S取到最小值为1639,此时b=t2=13,k=0,所以y1=13,解得x1=233.故△PMN面积取得最小值时的x1值为233.19.某学校三个社团的人员分布如下表(每名同学只参加一个社团):
声乐社排球社武术社高一4530a高二151020学校要对这三个社团的活动效果里等抽样调查,按分层抽样的方法从社团成员中抽取30人,结果声乐社被抽出12人,则a=______.答案:根据分层抽样的定义和方法可得,1245+15=30120+a,解得a=30,故为3020.参数方程(t是参数)表示的图象是()
A.射线
B.直线
C.圆
D.双曲线答案:A21.
如图,平面内向量,的夹角为90°,,的夹角为30°,且||=2,||=1,||=2,若=λ+2
,则λ等()
A.
B.1
C.
D.2
答案:D22.设集合A={x|},则A∩B等于(
)
A.
B.
C.
D.答案:B23.命题“梯形的两对角线互相不平分”的命题形式为()A.p或qB.p且qC.非pD.简单命题答案:记命题p:梯形的两对角线互相平分,
而原命题是“梯形的两对角线互相不平分”,是命题p的否定形式
故选C24.选修4-4参数方程与极坐标
在平面直角坐标系xOy中,动圆x2+y2-8xcosθ-6ysinθ+7cos2θ+8=0(θ∈R)的圆心为P(x0,y0),求2x0-y0的取值范围.答案:将圆的方程整理得:(x-4cosθ)2+(y-3sinθ)2=1由题设得x0=4cosθy0=3sinθ(θ为参数,θ∈R).所以2x0-y0=8cosθ-3sinθ=73cos(θ+φ),所以
-73≤2x0-y0≤73.25.“a=2”是“直线ax+2y=0平行于直线x+y=1”的(
)
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件答案:C26.如图,在四棱柱的上底面ABCD中,AB=DC,则下列向量相等的是()
A.AD与CB
B.OA与OC
C.AC与DB
D.DO与OB
答案:D27.已知向量表示“向东航行1km”,向量表示“向南航行1km”,则向量表示()
A向东南航行km
B.向东南航行2km
C.向东北航行km
D.向东北航行2km答案:A28.直角坐标xOy平面上,平行直线x=n(n=0,1,2,…,5)与平行直线y=n(n=0,1,2,…,5)组成的图形中,矩形共有()
A.25个
B.36个
C.100个
D.225个答案:D29.已知实数x,y满足2x+y+5=0,那么x2+y2的最小值为()A.5B.10C.25D.210答案:求x2+y2的最小值,就是求2x+y+5=0上的点到原点的距离的最小值,转化为坐标原点到直线2x+y+5=0的距离,d=522+1=5.故选A.30.若数列{an}是等差数列,对于bn=1n(a1+a2+…+an),则数列{bn}也是等差数列.类比上述性质,若数列{cn}是各项都为正数的等比数列,对于dn>0,则dn=______时,数列{dn}也是等比数列.答案:在类比等差数列的性质推理等比数列的性质时,我们一般的思路有:由加法类比推理为乘法,由减法类比推理为除法,由算术平均数类比推理为几何平均数等,故我们可以由数列{cn}是等差数列,则对于bn=1n(a1+a2+…+an),则数列{bn}也是等差数列.类比推断:若数列{cn}是各项均为正数的等比数列,则当dn=nC1C2C3Cn时,数列{dn}也是等比数列.故为:nC1C2C3Cn31.已知G是△ABC的重心,O是平面ABC外的一点,若λOG=OA+OB+OC,则λ=______.答案:如图,正方体中,OA+OB+OC=OD=3OG,∴λ=3.故为3.32.已知函数f(x),如果对任意一个三角形,只要它的三边长a,b,c都在f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则称f(x)为“保三角形函数”.在函数①f1(x)=x,②f2(x)=x,③f3(x)=x2中,其中______是“保三角形函数”.(填上正确的函数序号)答案:f1(x),f2(x)是“保三角形函数”,f3(x)不是“保三角形函数”.任给三角形,设它的三边长分别为a,b,c,则a+b>c,不妨假设a≤c,b≤c,由于a+b>a+b>c>0,所以f1(x),f2(x)是“保三角形函数”.对于f3(x),3,3,5可作为一个三角形的三边长,但32+32<52,所以不存在三角形以32,32,52为三边长,故f3(x)不是“保三角形函数”.故为:①②.33.以椭圆的焦点为顶点、顶点为焦点的双曲线方程是()
A.
B.
C.
D.答案:C34.已知f(x+1)=x2+2x+3,则f(2)的值为______.答案:由f(x+1)=x2+2x+3,得f(1+1)=12+2×1+3=6,故为:6.35.以下关于排序的说法中,正确的是(
)A.排序就是将数按从小到大的顺序排序B.排序只有两种方法,即直接插入排序和冒泡排序C.用冒泡排序把一列数从小到大排序时,最小的数逐趟向上漂浮D.用冒泡排序把一列数从小到大排序时,最大的数逐趟向上漂浮答案:C解析:由冒泡排序的特点知C正确.36.两条互相平行的直线分别过点A(6,2)和B(-3,-1),并且各自绕着A,B旋转,如果两条平行直线间的距离为d.
求:
(1)d的变化范围;
(2)当d取最大值时两条直线的方程.答案:(1)方法一:①当两条直线的斜率不存在时,即两直线分别为x=6和x=-3,则它们之间的距离为9.…(2分)②当两条直线的斜率存在时,设这两条直线方程为l1:y-2=k(x-6),l2:y+1=k(x+3),即l1:kx-y-6k+2=0,l2:kx-y+3k-1=0,…(4分)∴d=|3k-1+6k-2|k2+1=3|3k-1|k2+1.即(81-d2)k2-54k+9-d2=0.∵k∈R,且d≠9,d>0,∴△=(-54)2-4(81-d2)(9-d2)≥0,即0<d≤310且d≠9.…(9分)综合①②可知,所求d的变化范围为(0,310].方法二:如图所示,显然有0<d≤|AB|.而|AB|=[6-(-3)]2+[2-(-1)]2=310.故所求的d的变化范围为(0,310].(2)由图可知,当d取最大值时,两直线垂直于AB.而kAB=2-(-1)6-(-3)=13,∴所求直线的斜率为-3.故所求的直线方程分别为y-2=-3(x-6),y+1=-3(x+3),即3x+y-20=0和3x+y+10=0-…(13分)37.在某路段检测点对200辆汽车的车速进行检测,检测结果表示为如图所示的频率分布直方图,则车速不小于90km/h的汽车有辆.()A.60B.90C.120D.150答案:频率=频率组距×组距=(0.02+0.01)×10=0.3,频数=频率×样本总数=200×0.3=60(辆).故选A.38.已知圆C:x2+y2=12,直线l:4x+3y=25.
(1)圆C的圆心到直线l的距离为______;
(2)圆C上任意一点A到直线l的距离小于2的概率为______.答案:(1)由题意知圆x2+y2=12的圆心是(0,0),圆心到直线的距离是d=2532+42=5,(2)由题意知本题是一个几何概型,试验发生包含的事件是从这个圆上随机的取一个点,对应的圆上整个圆周的弧长,满足条件的事件是到直线l的距离小于2,过圆心做一条直线交直线l与一点,根据上一问可知圆心到直线的距离是5,在这条垂直于直线l的半径上找到圆心的距离为3的点做半径的垂线,根据弦心距,半径,弦长之间组成的直角三角形得到符合条件的弧长对应的圆心角是60°根据几何概型的概率公式得到P=60°360°=16故为:5;1639.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()
A.至少有1个白球;都是白球
B.至少有1个白球;至少有1个红球
C.恰有1个白球;恰有2个白球
D.至少有一个白球;都是红球答案:C40.已知集合{2x,x+y}={7,4},则整数x=______,y=______.答案:∵{2x,x+y}={7,4},∴2x=4x+y=7或2x=7x+y=4解得x=2y=5或x=3.5y=0.5不是整数,舍去故为:2,541.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为()A.8B.8πC.4πD.2π答案:∵用长为4、宽为2的矩形做侧面围成一个圆柱,且圆柱高为h=2∴底面圆周由长为4的线段围成,可得底面圆直径2r=4π∴此圆柱的轴截面矩形的面积为S=2r×h=8π故选:B42.设A=xn+x-n,B=xn-1+x1-n,当x∈R+,n∈N+时,求证:A≥B.答案:证明:A-B=(xn+x-n)-(xn-1+x1-n)=x-n(x2n+1-x2n-1-x)=x-n[x(x2n-1-1)-(x2n-1-1)]=x-n(x-1)(x2n-1-1).由x∈R+,x-n>0,得当x≥1时,x-1≥0,x2n-1-1≥0;当x<1时,x-1<0,x2n-1<0,即x-1与x2n-1-1同号.∴A-B≥0.∴A≥B.43.若直线x-y-1=0与直线x-ay=0的夹角为,则实数a等于()
A.
B.0
C.
D.0或答案:D44.已知向量a=(x,1,0),b=(1,2,3),若a⊥b,则x=______.答案:∵向量a=(x,1,0),b=(1,2,3),a⊥b,∴a•b=x+2+0=0,x=-2.故为:-2.45.已知曲线C上的动点P(x,y)满足到点F(0,1)的距离比到直线l:y=-2的距离小1.
(Ⅰ)求曲线C的方程;
(Ⅱ)动点E在直线l上,过点E分别作曲线C的切线EA,EB,切点为A、B.
(ⅰ)求证:直线AB恒过一定点,并求出该定点的坐标;
(ⅱ)在直线l上是否存在一点E,使得△ABM为等边三角形(M点也在直线l上)?若存在,求出点E坐标,若不存在,请说明理由.答案:(Ⅰ)曲线C的方程x2=4y(5分)(Ⅱ)(ⅰ)设E(a,-2),A(x1,x214),B(x2,x224),∵y=x24∴y′=12x过点A的抛物线切线方程为y-x214=12x1(x-x1),∵切线过E点,∴-2-x214=12x1(a-x1),整理得:x12-2ax1-8=0同理可得:x22-2ax2-8=0,∴x1,x2是方程x2-2ax-8=0的两根,∴x1+x2=2a,x1•x2=-8可得AB中点为(a,a2+42)又kAB=y1-y2x1-x2=x214-x224x1-x2=x1+x24=a2,∴直线AB的方程为y-(a22+2)=a2(x-a)即y=a2x+2,∴AB过定点(0,2)(10分)(ⅱ)由(ⅰ)知AB中点N(a,a2+42),直线AB的方程为y=a2x+2当a≠0时,则AB的中垂线方程为y-a2+42=-2a(x-a),∴AB的中垂线与直线y=-2的交点M(a3+12a4,-2)∴|MN|2=(a3+12a4-a)2+(-2-a2+42)2=116(a2+8)2(a2+4)∵|AB|=1+a24(x1+x2)2-4x1x2=(a2+4)(a2+8)若△ABM为等边三角形,则|MN|=32|AB|,∴116(a2+8)2(a2+4)=34(a2+4)(a2+8),解得a2=4,∴a=±2,此时E(±2,-2),当a=0时,经检验不存在满足条件的点E综上可得:满足条件的点E存在,坐标为E(±2,-2).(15分)46.三直线ax+2y+8=0,4x+3y=10,2x-y=10相交于一点,则a的值是(
)
A.-2
B.-1
C.0
D.1答案:B47.若A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},则A∩B=()
A.{2,1}
B.{(2,1)}
C.{1,2}
D.{(1,2)}答案:D48.已知顶点在坐标原点,焦点在x轴上的抛物线被直线y=2x+1截得的弦长为15,求此抛物线方程.答案:由题意可设抛物线的方程y2=2px(p≠0),直线与抛物线交与A(x1,y1),B(x2,y2)联立方程y2=2pxy=2x+1可得,4x2+(4-2p)x+1=0则x1+x2=12p-1,x1x2=14,y1-y2=2(x1-x2)AB=(x1-x2)2+(y1-y2)2=5(x1-x2)2=5[(x1+x2)2-4x1x2
]=5(12p-1)2-5=15解得p=6或p=-2∴抛物线的方程为y2=12x或y2=-4x49.平面直角坐标系中,O为坐标原点,设向量其中,若且0≤μ≤λ≤1,那么C点所有可能的位置区域用阴影表示正确的是()
A.
B.
C.
D.
答案:A50.两弦相交,一弦被分为12cm和18cm两段,另一弦被分为3:8,求另一弦长______.答案:设另一弦长xcm;由于另一弦被分为3:8的两段,故两段的长分别为311xcm,811xcm,有相交弦定理可得:311x?811x=12?18解得x=33故为:33cm第3卷一.综合题(共50题)1.已知一种材料的最佳加入量在100g到200g之间,若用0.618法安排试验,则第一次试点的加入量可以是(
)g。答案:161.8或138.22.已知棱长都相等的正三棱锥内接于一个球,某学生画出四个过球心的平面截球与正三棱锥所得的图形,如图所示,则()A.以上四个图形都是正确的B.只有(2)(4)是正确的C.只有(4)是错误的D.只有(1)(2)是正确的答案:(1)当平行于三棱锥一底面,过球心的截面如(1)图所示;(2)过三棱锥的一条棱和圆心所得截面如(2)图所示;(3)过三棱锥的一个顶点(不过棱)和球心所得截面如(3)图所示;(4)棱长都相等的正三棱锥和球心不可能在同一个面上,所以(4)是错误的.故选C.3.已知随机变量X的分布列为:P(X=k)=,k=1,2,…,则P(2<X≤4)等于()
A.
B.
C.
D.答案:A4.从直径AB的延长线上取一点C,过点C作该圆的切线,切点为D,若∠ACD的平分线交AD于点E,则∠CED的度数是()
A.30°
B.45°
C.60°
D.随点C的变化而变化答案:B5.下面四个结论:
①偶函数的图象一定与y轴相交;
②奇函数的图象一定通过原点;
③偶函数的图象关于y轴对称;
④既是奇函数又是偶函数的函数一定是f(x)=0(x∈R),
其中正确命题的个数是()A.1B.2C.3D.4答案:偶函数的图象关于y轴对称,但不一定与y轴相交,因此①错误,③正确;奇函数的图象关于原点对称,但不一定经过原点,只有在原点处有定义才通过原点,因此②错误;若y=f(x)既是奇函数,又是偶函数,由定义可得f(x)=0,但不一定x∈R,只要定义域关于原点对称即可,因此④错误.故选A.6.如图所示的几何体ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA⊥AB,M是EC的中点,
(Ⅰ)求证:DM⊥EB;
(Ⅱ)设二面角M-BD-A的平面角为β,求cosβ.答案:分别以直线AE,AB,AD为x轴、y轴、z轴,建立如图所示的空间直角坐标系A-xyz,设CB=a,则A(0,0,0),E(2a,0,0),B(0,2a,0),C(0,2a,a),D(0,0,2a)所以M(a,a,a2).(Ⅰ):DM=(a,a,-3a2)
,EB=(-2a,2a,0)DM•EB=a•(-2a)+a•2a+0=0.∴DM⊥EB,即DM⊥EB.(Ⅱ)设平面MBD的法向量为n=(x,y,z),DB=(0,2a,-2a),由n⊥DB,n⊥DM,得n•DB=2ay-2az=0n•DM=ax+ay-3a2z=0⇒y=zx+y-3z2=0取z=2得平面MBD的一非零法向量为n=(1,2,2),又平面BDA的一个法向量n1=(1,0,0).∴cos<n,n1>
=1+0+012+22+22•12+02+
02=13,即cosβ=137.某个命题与正整数n有关,如果当n=k(k∈N+)时命题成立,那么可推得当n=k+1时命题也成立.
现已知当n=7时该命题不成立,那么可推得()
A.当n=6时该命题不成立
B.当n=6时该命题成立
C.当n=8时该命题不成立
D.当n=8时该命题成立答案:A8.在7块并排、形状大小相同的试验田上进行施化肥量对水稻产量影响的试验,得到如下表所示的一组数据(单位:kg).
(1)画出散点图;
(2)求y关于x的线性回归方程;
(3)若施化肥量为38kg,其他情况不变,请预测水稻的产量.答案:(1)根据题表中数据可得散点图如下:(2)∵.x=15+20+25+30+35+40+457=30,.y=330+345+365+405+445+450+4557=399.3∴利用最小二乘法得到b=4.75,a=257∴根据回归直线方程系数的公式计算可得回归直线方程是?y=4.75x+257.(3)把x=38代入回归直线方程得y=438,可以预测,施化肥量为38kg,其他情况不变时,水稻的产量是438kg.9.若双曲线的渐近线方程为y=±3x,它的一个焦点是(10,0),则双曲线的方程是______.答案:因为双曲线的渐近线方程为y=±3x,则设双曲线的方程是x2-y29=λ,又它的一个焦点是(10,0)故λ+9λ=10∴λ=1,x2-y29=1故为:x2-y29=110.随机变量ξ服从二项分布ξ~B(n,p),且Eξ=300,Dξ=200,则p等于()
A.
B.0
C.1
D.答案:D11.Rt△ABC中,AB=3,BC=4,AC=5,将三角形绕直角边AB旋转一周形成一个新的几何体,想象几何体的结构,画出它的三视图,求出它的表面积和体积.答案:以绕AB边旋转为例,其直观图、正(侧)视图、俯视图依次分别为:其表面是扇形的表面,所以其表面积为S=πRL=36π,V=13×π×BC2×AB=16π.12.平面α的一个法向量为v1=(1,2,1),平面β的一个法向量为为v2=(-2,-4,10),则平面α与平面β()A.平行B.垂直C.相交D.不确定答案:∵平面α的一个法向量为v1=(1,2,1),平面β的一个法向量为v2=(-2,-4,10),∵v1•v2=1×(-2)+2×(-4)+1×10=0∴v1⊥v2,∴平面α⊥平面β故选B13.设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则CU(S∪T)等于()A.φB.{2,4,7,8}C.{1,3,5,6}D.{2,4,6,8}答案:∵S∪T={1,3,5,6},∴CU(S∪T)={2,4,7,8}.故选B.14.若x,y∈R,x>0,y>0,且x+2y=1,则xy的最大值为______.答案:∵x,y∈R,x>0,y>0,且x+2y=1,∴1=x+2y≥2x?2y,∴22×xy≤1,∴xy≤
122=24,所以xy≤18.当且仅当x=2yx+2y=1时,即x=12,y=14时,取等号.故为:18.15.给定椭圆C:x2a2+y2b2=1(a>b>0),称圆心在原点O、半径是a2+b2的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(2,0),其短轴的一个端点到点F的距离为3.
(1)求椭圆C和其“准圆”的方程;
(2)过椭圆C的“准圆”与y轴正半轴的交点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,求l1,l2的方程;
(3)若点A是椭圆C的“准圆”与x轴正半轴的交点,B,D是椭圆C上的两相异点,且BD⊥x轴,求AB•AD的取值范围.答案:(1)由题意可得:a=3,c=2,b=1,∴r=(3)2+12=2.∴椭圆C的方程为x23+y2=1,其“准圆”的方程为x2+y2=4;(2)由“准圆”的方程为x2+y2=4,令y=0,解得x=±2,取P(2,0),设过点P且与椭圆相切的直线l的方程为my=x-2,联立my=x-2x23+y2=1,消去x得到关于y的一元二次方程(3+m2)x2+4m+1=0,∴△=16m2-4(3+m2)=0,解得m=±1,故直线l1、l2的方程分别为:y=x-2,y=-x+2.(3)由“准圆”的方程为x2+y2=4,令y=0,解得x=±2,取点A(2,0).设点B(x0,y0),则D(x0,-y0).∴AB•AD=(x0-2,y0)•(x0-2,-y0)=(x0-2)2-y02,∵点B在椭圆x23+y2=1上,∴x023+y02=1,∴y02=1-x023,∴AD•AB=(x0-2)2-1+x023=43(x0-32)2,∵-3<x0<3,∴0≤43(x0-32)2<7+43,∴0≤AD•AB<7+43,即AD•AB的取值范围为[0,7+43)16.在数学归纳法证明多边形内角和定理时,第一步应验证()
A.n=1成立
B.n=2成立
C.n=3成立
D.n=4成立答案:C17.点(1,1)在圆(x-a)2+(y+a)2=4的内部,则a的取值范围是(
)
A.-1<a<1
B.0<a<1
C.a<-1或a>1
D.a=±1答案:A18.如图,⊙O是Rt△ABC的外接圆,点O在AB上,BD⊥AB,点B是垂足,OD∥AC,连接CD.
求证:CD是⊙O的切线.答案:证明:连接CO,(1分)∵OD∥AC,∴∠COD=∠ACO,∠CAO=∠DOB.(3分)∵∠ACO=∠CAO,∴∠COD=∠DOB.(6分)∵OD=OD,OC=OB,∴△COD≌△BOD.(8分)∴∠OCD=∠OBD=90°.∴OC⊥CD,即CD是⊙O的切线.(10分)19.为了考察两个变量x和y之间的线性相关性,甲、乙两位同学各自独立地做10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1和l2,已知两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,那么下列说法正确的是()
A.l1和l2必定平行
B.l1与l2必定重合
C.l1和l2有交点(s,t)
D.l1与l2相交,但交点不一定是(s,t)答案:C20.已知实数x、y、z满足x+2y+3z=1,则x2+y2+z2的最小值为______.答案:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2+)(12+22+32)故x2+y2+z2≥114,当且仅当x1=y2=z3,即:x2+y2+z2的最小值为114.故为:11421.若函数f(x)=loga(x+b)的图象如图,其中a,b为常数.则函数g(x)=ax+b的大致图象是(
)
答案:D解析:试题分析:解:由函数f(x)=loga(x+b)的图象为减函数可知0<a<1,f(x)=loga(x+b)的图象由f(x)=logax向左平移可知0<b<1,故函数g(x)=ax+b的大致图象是D故选D.22.如图,直线l1、l2、l3的斜率分别为k1、k2、k3,则必有()A.k1<k3<k2B.k3<k1<k2C.k1<k2<k3D.k3<k2<k1答案:设直线l1、l2、l3的倾斜角分别为α1,α2,α3.由已知为α1为钝角,α2>α3,且均为锐角.由于正切函数y=tanx在(0,π2)上单调递增,且函数值为正,所以tanα2>tanα3>0,即k2>k3>0.当α为钝角时,tanα为负,所以k1=tanα1<0.综上k1<k3<k2,故选A.23.圆C1x2+y2-4y-5=0与圆C2x2+y2-2x-2y+1=0位置关系是()
A.内含
B.内切
C.相交
D.外切答案:A24.不等式的解集是
(
)A.B.C.D.答案:B解析:当时,不等式成立;当时,不等式可化为,解得综上,原不等式解集为故选B25.在对两个变量x,y进行线性回归分析时,有下列步骤:
①对所求出的回归直线方程作出解释;
②收集数据(xi,yi),i=1,2,…,n;
③求线性回归方程;
④求相关系数;
⑤根据所搜集的数据绘制散点图.
如果根据可形性要求能够作出变量x,y具有线性相关结论,则在下列操作顺序中正确的是()
A.①②⑤③④
B.③②④⑤①
C.②④③①⑤
D.②⑤④③①答案:D26.袋子A和袋子B均装有红球和白球,从A中摸出一个红球的概率是13,从B中摸出一个红球的概率是P.
(1)从A中有放回地摸球,每次摸出一个,共摸5次,求恰好有3次摸到红球的概率;
(2)若A、B两个袋子中的总球数之比为1:2,将A、B中的球装在一起后,从中摸出一个红球的概率为25,求P的值.答案:(1)每次从A中摸一个红球的概率是13,摸不到红球的概率为23,根据独立重复试验的概率公式,故共摸5次,恰好有3次摸到红球的概率为:P=C35(13)3(23)2=10×127×49=40243.(2)设A中有m个球,A、B两个袋子中的球数之比为1:2,则B中有2m个球,∵将A、B中的球装在一起后,从中摸出一个红球的概率是25,∴13m+2mp3m=25,解得p=1330.27.用反证法证明“a>b”时,反设正确的是()
A.a>b
B.a<b
C.a=b
D.以上都不对答案:D28.电子手表厂生产某批电子手表正品率为,次品率为,现对该批电子手表进行测试,设第X次首次测到正品,则P(1≤X≤2013)等于()
A.1-()2012
B.1-()2013
C.1-()2012
D.1-()2013答案:B29.(坐标系与参数方程选做题)点P(-3,0)到曲线x=t2y=2t(其中参数t∈R)上的点的最短距离为______.答案:设点Q(t2,2t)为曲线上的任意一点,则|PQ|=(t2+3)2+(2t)2=(t2+5)2-16≥52-16=3,当且仅当t=0取等号,此时Q(0,0).故点P(-3,0)到曲线x=t2y=2t(其中参数t∈R)上的点的最短距离为3.故为3.30.如图把椭圆x225+y216=1的长轴AB分成8分,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,…P7七个点,F是椭圆的一个焦点,则|P1F|+|P2F|+…+|P7F|=______.答案:如图,把椭圆x225+y216=1的长轴AB分成8等份,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,P3,P4,P5,P6,P7七个点,F是椭圆的一个焦点,则根据椭圆的对称性知,|P1F1|+|P7F1|=|P1F1|+|P1F2|=2a,同理其余两对的和也是2a,又|P4F1|=a,∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=7a=35,故为35.31.k取何值时,一元二次方程kx2+3kx+k=0的两根为负。答案:解:∴k≤或k>332.如图,P-ABCD是正四棱锥,ABCD-A1B1C1D1是正方体,其中AB=2,PA=6.
(1)求证:PA⊥B1D1;
(2)求平面PAD与平面BDD1B1所成锐二面角的余弦值.答案:以D1为原点,D1A1所在直线为x轴,D1C1所在直线为y轴,D1D所在直线为z轴建立空间直角坐标系,则D1(0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 门窗家装合同书范本
- 信托国际标准制定合同
- 写字楼租赁员工关怀与福利协议
- 项目绿色建筑合作协议
- 线上培训实施方案
- 广告业务协议模板
- 跨境物流服务协议
- 摩托车配件交易协议
- 政府采购培训服务合同
- 半年期写字楼租赁协议
- 2023年事业单位面试结构化六大题型必看
- 生物化学(华南农业大学)智慧树知到答案章节测试2023年
- 骨科DRG付费方式下编码临床应用培训(骨科)
- 排水管网CCTV检测作业流程
- 路管线迁移施工方案
- 心理应激与应激障碍
- 标准太阳能光谱数据
- 高中音乐鉴赏 《舞动心弦-中国舞蹈音乐》
- 12J4-2 《专用门窗》标准图集
- GB/T 42019-2022基于时间敏感技术的宽带工业总线AUTBUS系统架构与通信规范
- WS/T 83-1996肉毒梭菌食物中毒诊断标准及处理原则
评论
0/150
提交评论