版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年青岛求实职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.某公司一年购买某种货物400吨,每次都购买x吨,运费为4万元/次,一年的总存储费用为4x万元,要使一年的总运费与总存储费用之和最小,则x=______吨.答案:某公司一年购买某种货物400吨,每次都购买x吨,则需要购买400x次,运费为4万元/次,一年的总存储费用为4x万元,一年的总运费与总存储费用之和为400x?4+4x万元,400x?4+4x≥2(400x×4)×4x=160,当且仅当1600x=4x即x=20吨时,等号成立即每次购买20吨时,一年的总运费与总存储费用之和最小.故为:20.2.已知函数①f(x)=3lnx;②f(x)=3ecosx;③f(x)=3ex;④f(x)=3cosx.其中对于f(x)定义域内的任意一个自变量x1都存在唯一个个自变量x2,使f(x1)f(x2)=3成立的函数序号是______.答案:根据题意可知:①f(x)=3lnx,x=1时,lnx没有倒数,不成立;②f(x)=3ecosx,任一自变量f(x)有倒数,但所取x】的值不唯一,不成立;③f(x)=3ex,任意一个自变量,函数都有倒数,成立;④f(x)=3cosx,当x=2kπ+π2时,函数没有倒数,不成立.所以成立的函数序号为③故为③3.如图是一个空间几何体的三视图,试用斜二测画法画出它的直观图.(尺寸不作严格要求,但是凡是未用铅笔作图不得分,随手画图也不得分)答案:由题可知题目所述几何体是正六棱台,画法如下:画法:(1)、画轴画x轴、y轴、z轴,使∠x′O′y′=45°,∠x′O′z′=90°
(图1)(2)、画底面以O′为中心,在XOY坐标系内画正六棱台下底面正方形的直观图ABCDEF.在z′轴上取线段O′O1等于正六棱台的高;过O1
画O1M、O1N分别平行O’x′、O′y′,再以O1为中心,画正六棱台上底面正方形的直观图A′B′C′E′F′(3)、成图连接AA′、BB′、CC′、DD′、EE′、FF′,并且加以整理,就得到正六棱台的直观图
(如图2).4.圆x2+y2-6x+4y+12=0与圆x2+y2-14x-2y+14=0的位置关系是______.答案:∵圆x2+y2-6x+4y+12=0化成标准形式,得(x-3)2+(y+2)2=1∴圆x2+y2-6x+4y+12=0的圆心为C1(3,-2),半径r1=1同理可得圆x2+y2-14x-2y+14=0的C2(7,1),半径r2=6∵两圆的圆心距|C1C2|=(7-3)2+(1+2)2=5∴|C1C2|=r2-r1=5,可得两圆的位置关系是内切故为:内切5.曲线的参数方程为(t是参数),则曲线是(
)
A.线段
B.双曲线的一支
C.圆
D.射线答案:D6.已知x1>0,x1≠1,且xn+1=xn(x2n+3)3x2n+1,(n=1,2,…).试证:数列{xn}或者对任意自然数n都满足xn<xn+1,或者对任意自然数n都满足xn>xn+1.答案:证:首先,xn+1-xn=xn(x2n+3)3x2n+1-xn=2xn(1-x2n)3x2n+1,由于x1>0,由数列{xn}的定义可知xn>0,(n=1,2,…)所以,xn+1-xn与1-xn2的符号相同.①假定x1<1,我们用数学归纳法证明1-xn2>0(n∈N)显然,n=1时,1-x12>0设n=k时1-xk2>0,那么当n=k+1时1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2>0,因此,对一切自然数n都有1-xn2>0,从而对一切自然数n都有xn<xn+1②若x1>1,当n=1时,1-x12<0;设n=k时1-xk2<0,那么当n=k+1时1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2<0,因此,对一切自然数n都有1-xn2<0,从而对一切自然数n都有xn>xn+17.8的值为()
A.2
B.4
C.6
D.8答案:B8.在(1+x)3+(1+x)4…+(1+x)7的展开式中,含x项的系数是______.(用数字作答)答案:(1+x)3+(1+x)4…+(1+x)7的展开式中,含x项的系数是C31+C41+C51+…+C71=25故为:259.实数系的结构图如图所示,其中1、2、3三个方格中的内容分别为()
A.有理数、零、整数
B.有理数、整数、零
C.零、有理数、整数
D.整数、有理数、零
答案:B10.圆心为(-2,3),且与y轴相切的圆的方程是()A.x2+y2+4x-6y+9=0B.x2+y2+4x-6y+4=0C.x2+y2-4x+6y+9=0D.x2+y2-4x+6y+4=0答案:根据圆心坐标(-2,3)到y轴的距离d=|-2|=2,则所求圆的半径r=d=2,所以圆的方程为:(x+2)2+(y-3)2=4,化为一般式方程得:x2+y2+4x-6y+9=0.故选A11.如图,圆与圆内切于点,其半径分别为与,圆的弦交圆于点(不在上),求证:为定值。
答案:见解析解析:考察圆的切线的性质、三角形相似的判定及其性质,容易题。证明:由弦切角定理可得12.已知抛物线C:y2=4x的焦点为F,点A在抛物线C上运动.
(1)当点A,P满足AP=-2FA,求动点P的轨迹方程;
(2)设M(m,0),其中m为常数,m∈R+,点A到M的距离记为d,求d的最小值.答案:(1)设动点P的坐标为(x,y),点A的坐标为(xA,yA),则AP=(x-xA,y-yA),因为F的坐标为(1,0),所以FA=(xA-1,yA),因为AP=-2FA,所以(x-,y-yA)=-2(xA-1,yA).所以x-xA=-2(xA-1),y-yA=-2yA,所以xA=2-x,yA=-y代入y2=4x,得到动点P的轨迹方程为y2=8-4x;(2)由题意,d=(m-xA)2+yA2=(m-xA)2+4xA=(xA+2-m)2-4-4m∴m-2≤0,即0<m≤2,xA=0时,dmin=m;m-2>0,即m>2,xA=m-2时,dmin=-4-4m.13.已知直线3x+4y-3=0与直线6x+my+14=0平行,则它们之间的距离是______.答案:直线3x+4y-3=0即6x+8y-6=0,它直线6x+my+14=0平行,∴m=8,则它们之间的距离是d=|c1-c2|a2+b2=|-6-14|62+82=2,故为:2.14.已知集合A={x|x>1},则(CRA)∩N的子集有()A.1个B.2个C.4个D.8个答案:∵集合A={x|x>1},∴CRA={x|x≤1},∴(CRA)∩N={0,1},∴(CRA)∩N的子集有22=4个,故选C.15.已知平面上直线l的方向向量=(-,),点O(0,0)和A(1,-2)在l上的射影分别是O'和A′,则=λ,其中λ等于()
A.
B.-
C.2
D.-2答案:D16.不论k为何实数,直线y=kx+1与曲线x2+y2-2ax+a2-2a-4=0恒有交点,则实数a的取值范围是______.答案:直线y=kx+1恒过(0,1)点,与曲线x2+y2-2ax+a2-2a-4=0恒有交点,必须定点在圆上或圆内,即:a2+12
≤4+2a所以,-1≤a≤3故为:-1≤a≤3.17.设向量a,b的夹角为60°的单位向量,则向量2a+b的模为()A.3B.7C.5D.3答案:|2a+b|=(2a+b)2=4a2+4a?b+b2=4+4×1×1×12+1=7故向量2a+b的模为7故选B18.将1,2,3,9这9个数字填在如图的9个空格中,要求每一行从左到右,每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法数为()
A.6种
B.12种
C.18种
D.24种
答案:A19.解下列关于x的不等式
(1)
(2)答案:(1)(2)原不等式的解集为解析:(1)
解:(2)
解:分析该题要设法去掉绝对值符号,可由去分类讨论当时原不等式等价于
故得不等式的解集为所以原不等式的解集为20.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为()A.8B.8πC.4πD.2π答案:∵用长为4、宽为2的矩形做侧面围成一个圆柱,且圆柱高为h=2∴底面圆周由长为4的线段围成,可得底面圆直径2r=4π∴此圆柱的轴截面矩形的面积为S=2r×h=8π故选:B21.已知方程x2-(k2-9)x+k2-5k+6=0的一根小于1,另一根大于2,求实数k的取值范围.答案:令f(x)=x2-(k2-9)x+k2-5k+6,则∵方程x2-(k2-9)x+k2-5k+6=0的一根小于1,另一根大于2,∴f(1)<0
且f(2)<0,∴12-(k2-9)+k2-5k+6<0且22-2(k2-9)+k2-5k+6<0,即16-5k<0且k2+5k-28>0,解得k>137-52.22.从2008名学生中选取50名学生参加数学竞赛,若采用下面的方法选取:先用简单随机抽样从2008人中剔除8人,剩下的2000人再按系统抽样的方法抽取50人,则在2008人中,每人入选的概率()
A.不全相等
B.均不相等
C.都相等,且为
D.都相等,且为答案:C23.某公司的管理机构设置是:设总经理一个,副总经理两个,直接对总经理负责,下设有6个部门,其中副总经理A管理生产部、安全部和质量部,副总经理B管理销售部、财务部和保卫部.请根据以上信息补充该公司的人事结构图,其中①、②处应分别填()
A.保卫部,安全部
B.安全部,保卫部
C.质检中心,保卫部
D.安全部,质检中心
答案:B24.设i为虚数单位,若=b+i(a,b∈R),则a,b的值为()
A.a=0,b=1
B.a=1,b=0
C.a=1,b=1
D.a=,b=-1答案:B25.设U={x|x<7,x∈N+}A={1,2,5},B={2,3,4,5},求A∩B,CUA,A∪(CUB).答案:∵U={1,2,3,4,5,6}A∩B={2,5}CUA={3,4,6}A∪CUB={1}26.设随机变量X~N(μ,δ2),且p(X≤c)=p(X>c),则c的值()
A.0
B.1
C.μ
D.μ答案:C27.把函数y=sin(x-)-2的图象经过按平移得到y=sinx的图象,则=(
)
A.
B.
C.
D.答案:A28.设直线l与平面α相交,且l的方向向量为a,α的法向量为n,若<a,n>=,则l与α所成的角为()
A.
B.
C.
D.答案:C29.将直线y=x绕原点逆时针旋转60°,所得直线的方程为()
A.y=-x
B.
C.y=-3x
D.答案:A30.已知:如图,CD是⊙O的直径,AE切⊙O于点B,DC的延长线交AB于点A,∠A=20°,则
∠DBE=______.答案:连接BC,∵CD是⊙O的直径,∴∠CBD=90°,∵AE是⊙O的切线,∴∠DBE=∠1,∠2=∠D;又∵∠1+∠D=90°,即∠1+∠2=90°---(1),∠A+∠2=∠1----(2),(1)-(2)得∠1=55°即∠DBE=55°.故为:∠DBE=55°.31.已知,向量与向量的夹角是,则x的值为()
A.±3
B.±
C.±9
D.3答案:D32.若点P(-1,3)在圆x2+y2=m2上,则实数m=______.答案:∵点P(-1,3)在圆x2+y2=m2上,∴点P坐标代入,得(-1)2+(3)2=m2,即m2=4,解之得m=±2.故为:±233.电子手表厂生产某批电子手表正品率为,次品率为,现对该批电子手表进行测试,设第X次首次测到正品,则P(1≤X≤2013)等于()
A.1-()2012
B.1-()2013
C.1-()2012
D.1-()2013答案:B34.点(1,2)到原点的距离为()
A.1
B.5
C.
D.2答案:C35.i是虚数单位,若(3+5i)x+(2-i)y=17-2i,则x、y的值分别为()
A.7,1
B.1,7
C.1,-7
D.-1,7答案:B36.已知实数x、y、z满足x+2y+3z=1,则x2+y2+z2的最小值为______.答案:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2+)(12+22+32)故x2+y2+z2≥114,当且仅当x1=y2=z3,即:x2+y2+z2的最小值为114.故为:11437.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望Eξ______(结果用最简分数表示).答案:用随机变量ξ表示选出的志愿者中女生的人数,ξ可取0,1,2,当ξ=0时,表示没有选到女生;当ξ=1时,表示选到一个女生;当ξ=2时,表示选到2个女生,∴P(ξ=0)=C25C27=1021,P(ξ=1)=C15C12C27=1021,P(ξ=2)=C22C27=121,∴Eξ=0×1021+1×1021+2×121=47.故为:4738.设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若A1A3=λA1A2(λ∈R),A1A4=μA1A2(μ∈R),且1λ+1μ=2,则称A3,A4调和分割A1,A2,已知点C(c,0),D(d,O)(c,d∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是()A.C可能是线段AB的中点B.D可能是线段AB的中点C.C,D可能同时在线段AB上D.C,D不可能同时在线段AB的延长线上答案:由已知可得(c,0)=λ(1,0),(d,0)=μ(1,0),所以λ=c,μ=d,代入1λ+1μ=2得1c+1d=2(1)若C是线段AB的中点,则c=12,代入(1)d不存在,故C不可能是线段AB的中,A错误;同理B错误;若C,D同时在线段AB上,则0≤c≤1,0≤d≤1,代入(1)得c=d=1,此时C和D点重合,与条件矛盾,故C错误.故选D39.抛物线C:y=x2上两点M、N满足MN=12MP,若OP=(0,-2),则|MN|=______.答案:设M(x1,x12),N(x2,x22),则MN=(x2-x1,x22-x12)MP=(-x1,-2-x12).因为MN=12MP,所以(x2-x1,x22-x12)=12(-x1,-2-x12),即x2-x1=-12x1,x22-x12=12(-2-x12),所以x1=2x2,2x22=-2+x12,联立解得:x2=1,x1=2或x2=-1,x1=-2即M(1,1),N(2,4)或M(-1,1),N(-2,4)所以|MN|=10故为10.40.如图,四条直线互相平行,且相邻两条平行线的距离均为h,一直正方形的4个顶点分别在四条直线上,则正方形的面积为()
A.4h2
B.5h2
C.4h2
D.5h2
答案:B41.(2x+1)5的展开式中的第3项的系数是()A.10B.40C.80D.120答案:(2x+1)5的展开式中的第3项为T3=C25(2x)3
×1=80x3,故(2x+1)5的展开式中的第3项的系数是80,故选C.42.平面上一动点到两定点距离差为常数2a(a>0)的轨迹是否是双曲线,若a>c是否为双曲线?答案:由题意,设两定点间的距离为2c,则2a<2c时,轨迹为双曲线的一支2a=2c时,轨迹为一条射线2a>2c时,无轨迹.43.若矩阵A=
72
69
67
65
62
59
81
74
68
64
59
52
85
79
76
72
69
64
228
219
211
204
195
183
是表示我校2011届学生高二上学期的期中成绩矩阵,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含义如下:i=1表示语文成绩,i=2表示数学成绩,i=3表示英语成绩,i=4表示语数外三门总分成绩j=k,k∈N*表示第50k名分数.若经过一定量的努力,各科能前进的名次是一样的.现小明的各科排名均在250左右,他想尽量提高三门总分分数,那么他应把努力方向主要放在哪一门学科上()
A.语文
B.数学
C.外语
D.都一样答案:B44.若直线x-y-1=0与直线x-ay=0的夹角为,则实数a等于()
A.
B.0
C.
D.0或答案:D45.如图,设a,b,c,d>0,且不等于1,y=ax,y=bx,y=cx,y=dx在同一坐标系中的图象如图,则a,b,c,d的大小顺序()
A.a<b<c<d
B.a<b<d<c
C.b<a<d<c
D.b<a<c<d
答案:C46.函数y=ax2+a与(a≠0)在同一坐标系中的图象可能是()
A.
B.
C.
D.
答案:D47.200辆汽车经过某一雷达地区,时速频率分布直方图如图所示,则时速不低于60km/h的汽车数量为
______辆.答案:时速不低于60km/h的汽车的频率为(0.028+0.01)×10=0.38∴时速不低于60km/h的汽车数量为200×0.38=76故为:7648.教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有()
A.10种
B.25种
C.52种
D.24种答案:D49.将5位志愿者分成4组,其中一组为2人,其余各组各1人,到4个路口协助交警执勤,则不同的分配方案有______种(用数字作答).答案:由题意,先分组,再到4个路口协助交警执勤,则不同的分配方案有C25A44=240种故为:240.50.已知双曲线x2-y23=1,过P(2,1)点作一直线交双曲线于A、B两点,并使P为AB的中点,则直线AB的斜率为______.答案:设A(x1,y1)、B(x2,y2),代入双曲线方程x2-y23=1相减得直线AB的斜率kAB=y1-y2x1-x2=3(x1+x2)y1+y2=3×x1+x22y1+y22=3×21=6.故为:6第2卷一.综合题(共50题)1.如图,已知⊙O的直径AB=5,C为圆周上一点,BC=4,过点C作⊙O的切线l,过点A作l的垂线AD,垂足为D,则CD=______.
答案:如图,连接OC,由题意DC是切线可得出OC⊥DC,再过过A作AE⊥OC于E,故有四边形AECD是矩形,可得AE=CD又⊙O的直径AB=5,C为圆周上一点,BC=4,∴AC=3故S△AOC=12S△ABC=12×12×4×3=3又OC=52,故12×52×AE=3解得AE=125所以CD=125故为:125.2.是平面直角坐标系(坐标原点为O)内分别与x轴、y轴正方向相同的两个单位向量,且则△OAB的面积等于()
A.15
B.10
C.7.5
D.5答案:D3.(选做题)已知x+2y=1,则x2+y2的最小值是______.答案:x2+y2表示(0,0)到x+2y=1上点的距离的平方∴x2+y2的最小值是(0,0)到x+2y=1的距离d的平方据点到直线的距离公式得d=11+4=15∴x2+y2的最小值是15故为154.圆的极坐标方程为ρ=2cos(θ+π3),则该圆的圆心的极坐标是______.答案:∵ρ=2cos(θ+π3),展开得ρ=cosθ-3sinθ,∴ρ2=ρcosθ-3ρsinθ,∴x2+y2=x-3y,∴(x-12)2+(y+32)2=1.∴圆心(12,-32).∴ρ=(12)2+(-32)2=1,tanθ=-3212=-3,∴θ=-π3.故圆心的极坐标是(1,-π3).故为(1,-π3).5.①某寻呼台一小时内收到的寻呼次数X;
②长江上某水文站观察到一天中的水位X;
③某超市一天中的顾客量X.
其中的X是连续型随机变量的是()
A.①
B.②
C.③
D.①②③答案:B6.平面内有两个定点F1(-5,0)和F2(5,0),动点P满足条件|PF1|-|PF2|=6,则动点P的轨迹方程是()A.x216-y29=1(x≤-4)B.x29-y216=1(x≤-3)C.x216-y29=1(x>≥4)D.x29-y216=1(x≥3)答案:由|PF1|-|PF2|=6<|F1F2|知,点P的轨迹是以F1、F2为焦点的双曲线右支,得c=5,2a=6,∴a=3,∴b2=16,故动点P的轨迹方程是x29-y216=1(x≥3).故选D.7.已知不等式(a2+a+2)2x>(a2+a+2)x+8,其中x∈N+,使此不等式成立的x的最小整数值是______.答案:∵a2+a+2=(a+12)2+74>1,且x∈N+,∴由正整数指数函数在底数大于1时单调递增的性质,得2x>x+8,即x>8,∴使此不等式成立的x的最小整数值为9.故为:9.8.已知菱形ABCD的顶点A,C在椭圆x2+3y2=4上,对角线BD所在直线的斜率为1.
(Ⅰ)当直线BD过点(0,1)时,求直线AC的方程;
(Ⅱ)当∠ABC=60°时,求菱形ABCD面积的最大值.答案:(Ⅰ)由题意得直线BD的方程为y=x+1.因为四边形ABCD为菱形,所以AC⊥BD.于是可设直线AC的方程为y=-x+n.由x2+3y2=4y=-x+n得4x2-6nx+3n2-4=0.因为A,C在椭圆上,所以△=-12n2+64>0,解得-433<n<433.设A,C两点坐标分别为(x1,y1),(x2,y2),则x1+x2=3n2,x1x2=3n2-44,y1=-x1+n,y2=-x2+n.所以y1+y2=n2.所以AC的中点坐标为(3n4,n4).由四边形ABCD为菱形可知,点(3n4,n4)在直线y=x+1上,所以n4=3n4+1,解得n=-2.所以直线AC的方程为y=-x-2,即x+y+2=0.(Ⅱ)因为四边形ABCD为菱形,且∠ABC=60°,所以|AB|=|BC|=|CA|.所以菱形ABCD的面积S=32|AC|2.由(Ⅰ)可得|AC|2=(x1-x2)2+(y1-y2)2=-3n2+162,所以S=34(-3n2+16)(-433<n<433).所以当n=0时,菱形ABCD的面积取得最大值43.9.六个不同大小的数按如图形式随机排列,设第一行这个数为M1,M2,M3分别表示第二、三行中最大数,则满足M1<M2<M3所有排列的个数______.答案:首先M3一定是6个数中最大的,设这六个数分别为a,b,c,d,e,f,不妨设a>b>c>d>e>f.因为如果a在第三行,则a一定是M3,若a不在第三行,则a一定是M1或M2,此时无法满足M1<M2<M3,故a一定在第三行.故
M2一定是b,c,d中一个,否则,若M2是e,则第二行另一个数只能是f,那么第一行的数就比e大,无法满足M1<M2<M3.当M2是b时,此时,a在第三行,b在第二行,其它数任意排,所有的排法有C31
C21
A44=144(种),当M2是c时,此时a和b必须在第三行,c在第二行,其它数任意排,所有的排法有A32
C21
A33=72(种),当M2是d时,此时,a,b,c在第三行,d在第二行,其它数任意排,所有的排法有A33
C21
A22=24(种),故满足M1<M2<M3所有排列的个数为:24+72+144=240种,故为:240.10.已知A(1,2),B(-3,b)两点的距离等于42,则b=______.答案:∵A(1,2),B(-3,b)∴|AB|=(-3-1)2+(b-2)2=42,解之得b=6或-2故为:6或-211.某校有学生1
200人,为了调查某种情况打算抽取一个样本容量为50的样本,问此样本若采用简单随便机抽样将如何获得?答案:本题可以采用抽签法来抽取样本,首先把该校学生都编上号0001,0002,0003…用抽签法做1200个形状、大小相同的号签,然后将这些号签放到同一个箱子里,进行均匀搅拌,抽签时,每次从中抽一个号签,连续抽取50次,就得到一个容量为50的样本.12.定义xn+1yn+1=1011xnyn为向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一个矩阵变换,其中O是坐标原点,n∈N*.已知OP1=(2,0),则OP2010的坐标为______.答案:A=1011,B=20AA=1011
1011
=1021A3=111
121
=1031依此类推A2009=1020101∴A2009B=1020101
20=24018∴OP2010的坐标为(2,4018)故为:(2,4018)13.在空间四边形OABC中,OA+AB-CB等于()A.OAB.ABC.OCD.AC答案:根据向量的加法、减法法则,得OA+AB-CB=OB-CB=OB+BC=OC.故选C.14.点P(,)与圆x2+y2=1的位置关系是()
A.在圆内
B.在圆外
C.在圆上
D.与t有关答案:C15.(1)已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;
(2)已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1,以下结论正确的是()
A.(1)的假设错误,(2)的假设正确
B.(1)与(2)的假设都正确
C.(1)的假设正确,(2)的假设错误
D.(1)与(2)的假设都错误答案:A16.(几何证明选讲选做题)如图,已知四边形ABCD内接于⊙O,且AB为⊙O的直径,直线MN切
⊙O于D,∠MDA=45°,则∠DCB=______.答案:连接BD,∵AB为⊙O的直径,直线MN切⊙O于D,∠MDA=45°,∴∠ABD=45°,∠ADB=90°,∴∠DCB=∠ABD+∠ADB=45°+90°=135°.故为:135°.17.为了考察两个变量x和y之间的线性相关性,甲、乙两位同学各自独立地做10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1和l2,已知两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,那么下列说法正确的是()
A.l1和l2必定平行
B.l1与l2必定重合
C.l1和l2有交点(s,t)
D.l1与l2相交,但交点不一定是(s,t)答案:C18.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是()A.甲B.乙C.丙D.丁答案:若甲是获奖的歌手,则都说假话,不合题意.若乙是获奖的歌手,则甲、乙、丁都说真话,丙说假话,不符合题意.若丁是获奖的歌手,则甲、丁、丙都说假话,乙说真话,不符合题意.故获奖的歌手是丙故先C19.若数列{an}是等差数列,对于bn=1n(a1+a2+…+an),则数列{bn}也是等差数列.类比上述性质,若数列{cn}是各项都为正数的等比数列,对于dn>0,则dn=______时,数列{dn}也是等比数列.答案:在类比等差数列的性质推理等比数列的性质时,我们一般的思路有:由加法类比推理为乘法,由减法类比推理为除法,由算术平均数类比推理为几何平均数等,故我们可以由数列{cn}是等差数列,则对于bn=1n(a1+a2+…+an),则数列{bn}也是等差数列.类比推断:若数列{cn}是各项均为正数的等比数列,则当dn=nC1C2C3Cn时,数列{dn}也是等比数列.故为:nC1C2C3Cn20.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人,为了解职工收入情况,决定采用分层抽样的方法从中抽取样本.若样本中具有初级职称的职工为10人,则样本容量为()
A.10
B.20
C.40
D.50答案:C21.曲线x=t+1ty=12(t+1t)(t为参数)的直角坐标方程是______.答案:∵曲线C的参数方程x=t+1ty=12(t+1t)(t为参数)x=t+1t≥2,可得x的限制范围是x≥2,再根据x2=t+1t+2,∴t+1t=x2-2,可得直角坐标方程是:x2=2(y+1),(x≥2),故为:x2=2(y+1),(x≥2).22.在极坐标中,由三条曲线θ=0,θ=,ρcosθ+ρsinθ=1围成的图形的面积是()
A.
B.
C.
D.答案:A23.如图,△ABC内接于圆⊙O,CT切⊙O于C,∠ABC=100°,∠BCT=40°,则∠AOB=()
A.30°
B.40°
C.80°
D.70°
答案:C24.已知命题p:∀x∈R,x2-x+1>0,则命题¬p
是______.答案:∵命题p:∀x∈R,x2-x+1>0,∴命题p的否定是“∃x∈R,x2-x+1≤0”故为:∃x∈R,x2-x+1≤0.25.若向量a⊥b,且向量a=(2,m),b=(3,1)则m=______.答案:因为向量a=(2,m),b=(3,1),又a⊥b,所以2×3+m=0,所以m=-6.故为-6.26.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过3个小时,这种细菌由1个可繁殖成()
A.511个
B.512个
C.1023个
D.1024个答案:B27.如图,某公司制造一种海上用的“浮球”,它是由两个半球和一个圆柱筒组成.其中圆柱的高为2米,球的半径r为0.5米.
(1)这种“浮球”的体积是多少立方米(结果精确到0.1m3)?
(2)假设该“浮球”的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为20元,半球形部分每平方米建造费用为30元.求该“浮球”的建造费用(结果精确到1元).答案:(1)∵球的半径r为0.5米,∴两个半球的体积之和为V球=43πr3=43π?18=16πm3,∵圆柱的高为2米,∴V圆柱=πr2?h=π×14×2=12πm3,∴该“浮球”的体积是:V=V球+V圆柱=23π≈2.1m3;(2)圆柱筒的表面积为2πrh=2πm2;两个半球的表面积为4πr2=πm2,∵圆柱形部分每平方米建造费用为20元,半球形部分每平方米建造费用为30元,∴该“浮球”的建造费用为2π×20+π×30=70π≈220元.28.已知某几何体的三视图如图,画出它的直观图,求该几何体的表面积和体积.答案:由三视图可知:该几何体是由下面长、宽、高分别为4、4、2的长方体,上面为高是2、底面是边长分别为4、4的矩形的四棱锥,而组成的几何体.它的直观图如图.∴S表面积=4×2×4+4×4+4×12×4×22=48+162.V体积=4×4×2+13×4×4×2=1283.29.长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为______.答案:设长方体过同一顶点的三条棱长分别为a,b,c,∵从长方体一个顶点出发的三个面的面积分别为3,5,15,∴a?b=3,a?c=5,b?c=15∴(a?b?c)2=152∴a?b?c=15即长方体的体积为15,故为:15.30.方程组的解集为()
A.{2,1}
B.{1,2}
C.{(2,1)}
D.(2,1)答案:C31.一个样本a,99,b,101,c中五个数恰成等差数列,则这个样本的极差与标准差分别为(
)。答案:4;32.若角α和β的两边分别对应平行且方向相反,则当α=45°时,β=______.答案:由题意知∠α=45°°,AB∥CE,AE∥BD∵AE∥BD∴∠BDC=∠α=45°∵AB∥CE∴∠β=∠BDC=45°故为45°.33.不等式的解集是
.答案:[0,2]解析:本小题主要考查根式不等式的解法,去掉根号是解根式不等式的基本思路,也考查了转化与化归的思想.原不等式等价于解得0≤x≤2.34.已知A(4,1,3)、B(2,-5,1),C为线段AB上一点,且则C的坐标为()
A.
B.
C.
D.答案:C35.设复数z=cosθ+sinθi,0≤θ≤π,则|z+1|的最大值为______.答案:复数z=cosθ+sinθi,0≤θ≤π,则|z+1|=|cosθ+1+isinθ|=(1+cosθ)2+sin2θ=2+2cosθ≤2.故为:2.36.若f(x)在定义域[a,b]上有定义,则在该区间上()A.一定连续B.一定不连续C.可能连续也可能不连续D.以上均不正确答案:f(x)有定义是f(x)在区间上连续的必要而不充分条件.有定义不一定连续.还需加上极限存在才能推出连续.故选C.37.设P,Q为△ABC内的两点,且AP=mAB+nAC
(m,n>0)AQ=pAB+qAC
(p,q>0),则△ABP的面积与△ABQ的面积之比为______.答案:设P到边AB的距离为h1,Q到边AB的距离为h2,则△ABP的面积与△ABQ的面积之比为h1h2,设AB边上的单位法向量为e,AB?e=0,则h1=|AP?e|=|(mAB+nAC)?e|=|m?AB?e+nAC?e|=|nAC?e|,同理可得h2=|qAC?e|,∴h1h2=|nq|=nq,故为n:q.38.已知当m∈R时,函数f(x)=m(x2-1)+x-a的图象和x轴恒有公共点,求实数a的取值范围.答案:(1)m=0时,f(x)=x-a是一次函数,它的图象恒与x轴相交,此时a∈R.(2)m≠0时,由题意知,方程mx2+x-(m+a)=0恒有实数解,其充要条件是△=1+4m(m+a)=4m2+4am+1≥0.又只需△′=(4a)2-16≤0,解得-1≤a≤1,即a∈[-1,1].∴m=0时,a∈R;m≠0时,a∈[-1,1].39.等于()
A.
B.
C.
D.答案:B40.命题“正数的绝对值等于它本身”的逆命题是______.答案:将命题“正数的绝对值等于它本身”改写为“若一个数是正数,则其绝对值等于它本身”,所以逆命题是“若一个数的绝对值等于它本身,则这个数是正数”,即“绝对值等于它本身的数是正数”.故为:“绝对值等于它本身的数是正数”.41.证明不等式的最适合的方法是()
A.综合法
B.分析法
C.间接证法
D.合情推理法答案:B42.已知动点P(x,y)满足(x+2)2+y2-(x-2)2+y2=2,则动点P的轨迹是______.答案:∵(x+2)2+y2-(x-2)2+y2=2,即动点P(x,y)到两定点(-2,0),(2,0)的距离之差等于2,由双曲线定义知动点P的轨迹是双曲线的一支(右支).:双曲线的一支(右支).43.(x3+1xx)10的展开式中的第四项是______.答案:由二项式定理的通项公式可知(x3+1xx)10的展开式中的第四项是:C310(x3)7(1xx)3=120x16?x.故为:120x16?x.44.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()
A.若K2的观测值为k=6.635,而p(K2≥6.635)=0.010,故我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病
B.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病
C.若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推判出现错误
D.以上三种说法都不正确答案:C45.一段双行道隧道的横截面边界由椭圆的上半部分和矩形的三边组成,如图所示.一辆卡车运载一个长方形的集装箱,此箱平放在车上与车同宽,车与箱的高度共计4.2米,箱宽3米,若要求通过隧道时,车体不得超过中线.试问这辆卡车是否能通过此隧道,请说明理由.答案:建立如图所示的坐标系,则此隧道横截面的椭圆上半部分方程为:x225+y24=1,y≥0.令x=3,则代入椭圆方程,解得y=1.6,因为1.6+3=4.6>4.2,所以,卡车能够通过此隧道.46.直线kx-y=k-1与直线ky=x+2k的交点在第二象限内,则k的取值范围是
______.答案:联立两直线方程得kx-y=k-1①ky=x+2k②,由②得y=x+2kk③,把③代入①得:kx-x+2kk=k-1,当k+1≠0即k≠-1时,解得x=kk-1,把x=kk-1代入③得到y=2k-1k-1,所以交点坐标为(kk-1,2k-1k-1)因为直线kx-y=k-1与直线ky=x+2k的交点在第二象限内,得kk-1<02k-1k-1>
0解得0<k<1,k>1或k<12,所以不等式组的解集为0<k<12则k的取值范围是0<k<12故为:0<k<1247.附加题(必做题)
如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4.
(1)设AD=λAB,异面直线AC1与CD所成角的余弦值为925,求λ的值;
(2)若点D是AB的中点,求二面角D-CB1-B的余弦值.答案:(1)以CA,CB,CC1分别为x,y,z轴建立如图所示空间直角坐标,因为AC=3,BC=4,AA1=4,所以A(3,0,0),B(0,4,0),C(0,0,0),C1=(0,0,4),所以AC1=(-3,0,4),因为AD=λAB,所以点D(-3λ+3,4λ,0),所以CD=(-3λ+3,4λ,0),因为异面直线AC1与CD所成角的余弦值为925,所以|cos<AC1,CD>|=|9λ-9|5(3-3λ)2+16λ2=925,解得λ=12.…(4分)(2)由(1)得B1(0,4,4),因为
D是AB的中点,所以D(32,2,0),所以CD=(32,2,0),CB1=(0,4,4),平面CBB1C1的法向量
n1=(1,0,0),设平面DB1C的一个法向量n2=(x0,y0,z0),则n1,n2的夹角(或其补角)的大小就是二面角D-CB1-B的大小,由n2•CD=0n2•CB
1=0得32x0+2y0=04y0+4z0=0令x0=4,则y0=-3,z0=3,所以n2=(4,-3,3),∴cos<n1,n2>=n1•n2|n1|•|n2|=434=23417.所以二面角D-B1C-B的余弦值为23417.
…(10分)48.要使直线y=kx+1(k∈R)与焦点在x轴上的椭圆x27+y2a=1总有公共点,实数a的取值范围是______.答案:要使方程x27+y2a=1表示焦点在x轴上的椭圆,需a<7,由直线y=kx+1(k∈R)恒过定点(0,1),所以要使直线y=kx+1(k∈R)与椭圆x27+y2a=1总有公共点,则(0,1)应在椭圆上或其内部,即a>1,所以实数a的取值范围是[1,7).故为[1,7).49.以椭圆的焦点为顶点、顶点为焦点的双曲线方程是()
A.
B.
C.
D.答案:C50.与
向量
=(2,-1,2)共线且满足方程=-18的向量为()
A.不存在
B.-2
C.(-4,2,-4)
D.(4,-2,4)答案:D第3卷一.综合题(共50题)1.给定两个长度为1且互相垂直的平面向量OA和OB,点C在以O为圆心的圆弧AB上变动.若OC=2xOA+yOB,其中x,y∈R,则x+y的最大值是______.答案:由题意|OC|=1,即4x2+y2=1,令x=12cosθ,y=sinθ则x+y=12cosθ+sinθ=(12)2+1sin(θ+φ)≤52故x+y的最大值是52故为:522.命题“正数的绝对值等于它本身”的逆命题是______.答案:将命题“正数的绝对值等于它本身”改写为“若一个数是正数,则其绝对值等于它本身”,所以逆命题是“若一个数的绝对值等于它本身,则这个数是正数”,即“绝对值等于它本身的数是正数”.故为:“绝对值等于它本身的数是正数”.3.己知△ABC的外心、重心、垂心分别为O,G,H,若,则λ=()
A.3
B.2
C.
D.答案:A4.函数f(x)=8xx2+2(x>0)()A.当x=2时,取得最小值83B.当x=2时,取得最大值83C.当x=2时,取得最小值22D.当x=2时,取得最大值22答案:f(x)=8xx2+2=8x+2x≤822(x>0)=22当且仅当x=2x即x=2时,取得最大值22故选D.5.我们称正整数n为“好数”,如果n的二进制表示中1的个数多于0的个数.如6=(110):为好数,1984=(11111000000);不为好数,则:
(1)二进制表示中恰有5位数码的好数共有______个;
(2)不超过2012的好数共有______个.答案:(1)二进制表示中恰有5位数码的二进制数分别为:10000,10001,10010,10011,10100,10101,10110,10111,11000,11001,11010,11011,11100,11101,11110,11111,共十六个数,再结合好数的定义,得到其中好数有11个;(2)整数2012的二进制数为:11111011100,它是一个十一位的二进制数.其中一位的二进制数是:1,共有C11个;其中二位的二进制数是:11,共有C22个;
其中三位的二进制数是:101,110,111,共有C12+C22个;
其中四位的二进制数是:1011,1101,1110,1111,共有C23+C33个;
其中五位的二进制数是:10011,10101,10110,11001,11010,11100,10111,11011,11101,11110,11111,共有C24+C34+C44个;
以此类推,其中十位的二进制数是:共有C49+C59+C69+C79+C89+C99个;其中十一位的小于2012二进制数是:共有24+4个;一共不超过2012的好数共有1164个.故1065个6.不等式|x-500|≤5的解集是______.答案:因为不等式|x-500|≤5,由绝对值不等式的几何意义可知:{x|495≤x≤505}.故为:{x|495≤x≤505}.7.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X表示这10个村庄中交通不方便的村庄数,则P(X=4)=______.(用数字表示)答案:由题意P(X=4)=C47×C68C1015=7×6×53×2×1×8×72×115×14×13×12×115×4×3×2×1=140429故为:1404298.一张纸上画有一个半径为R的圆O和圆内一个定点A,且OA=a,折叠纸片,使圆周上某一点A′刚好与点A重合.这样的每一种折法,都留下一条折痕.当A′取遍圆周上所有点时,求所有折痕所在直线上点的集合.答案:对于⊙O上任意一点A′,连AA′,作AA′的垂直平分线MN,连OA′,交MN于点P,则OP+PA=OA′=R.由于点A在⊙O内,故OA=a<R.从而当点A′取遍圆周上所有点时,点P的轨迹是以O、A为焦点,OA=a为焦距,R(R>a)为长轴的椭圆C.而MN上任一异于P的点Q,都有OQ+QA=OQ+QA′>OA′,故点Q在椭圆C外,即折痕上所有的点都在椭圆C上及C外.反之,对于椭圆C上或外的一点S,以S为圆心,SA为半径作圆,交⊙O于A′,则S在AA′的垂直平分线上,从而S在某条折痕上.最后证明所作⊙S与⊙O必相交.1°
当S在⊙O外时,由于A在⊙O内,故⊙S与⊙O必相交;2°
当S在⊙O内时(例如在⊙O内,但在椭圆C外或其上的点S′),取过S′的半径OD,则由点S′在椭圆C外,故OS′+S′A≥R(椭圆的长轴).即S′A≥S′D.于是D在⊙S′内或上,即⊙S′与⊙O必有交点.于是上述证明成立.综上可知,折痕上的点的集合为椭圆C上及C外的所有点的集合.9.已知平面α的法向量是(2,3,-1),平面β的法向量是(4,λ,-2),若α∥β,则λ的值是()
A.-
B.-6
C.6
D.答案:C10.设某种动物由出生算起活到10岁的概率为0.9,活到15岁的概率为0.6.现有一个10岁的这种动物,它能活到15岁的概率是______.答案:设活过10岁后能活到15岁的概率是P,由题意知0.9×P=0.6,解得P=23即一个10岁的这种动物,它能活到15岁的概率是23故为:23.11.某班试用电子投票系统选举班干部候选人.全班k名同学都有选举权和被选举权,他们的编号分别为1,2,…,k,规定:同意按“1”,不同意(含弃权)按“0”,令aij=1,第i号同学同意第j号同学当选.0,第i号同学不同意第j号同学当选.其中i=1,2,…,k,且j=1,2,…,k,则同时同意第1,2号同学当选的人数为()A.a11+a12+…+a1k+a21+a22+…+a2kB.a11+a21+…+ak1+a12+a22+…+ak2C.a11a12+a21a22+…+ak1ak2D.a11a21+a12a22+…+a1ka2k答案:第1,2,…,k名学生是否同意第1号同学当选依次由a11,a21,a31,…,ak1来确定(aij=1表示同意,aij=0表示不同意或弃权),是否同意第2号同学当选依次由a12,a22,…,ak2确定,而是否同时同意1,2号同学当选依次由a11a12,a21a22,…,ak1ak2确定,故同时同意1,2号同学当选的人数为a11a12+a21a22+…+ak1ak2,故选C.12.若一元二次方程kx2-4x-5=0
有两个不相等实数根,则k
的取值范围是______.答案:∵kx2-4x-5=0有两个不相等的实数根,∴△=16+20k>0,且k≠0,解得,k>-45且k≠0;故是:k>-45且k≠0.13.设过点A(p,0)(p>0)的直线l交抛物线y2=2px(p>0)于B、C两点,
(1)设直线l的倾斜角为α,写出直线l的参数方程;
(2)设P是BC的中点,当α变化时,求P点轨迹的参数方程,并化为普通方程.答案:(1)l的参数方程为x=p+tcosαy=tsinα(t为参数)其中α≠0(2)将直线的参数方程代入抛物线方程中有:t2sin2α-2ptcosα-2p2=0设B、C两点对应的参数为t1,t2,其中点P的坐标为(x,y),则点P所对应的参数为t1+t22,由t1+t2=2pcosαsin2αt1t2=-2p2sin2α,当α≠90°时,应有x=p+t1+t22cosα=p+ptan2αy=t1+t22sinα=ptanα(α为参数)消去参数得:y2=px-p2当α=90°时,P与A重合,这时P点的坐标为(p,0),也是方程的解综上,P点的轨迹方程为y2=px-p214.如图:在平行六面体ABCD-A1B1C1D1中,M为A1C1与B1D1的交点.若则下列向量中与相等的向量是()
A.
B.
C.
D.
答案:A15.正方体ABCD-A1B1C1D1的棱长为1,点M是棱AB的中点,点P是平面ABCD上的一动点,且点P到直线A1D1的距离两倍的平方比到点M的距离的平方大4,则点P的轨迹为()A.圆B.椭圆C.双曲线D.抛物线答案:在平面ABCD上,以AD为x轴,以AB为y轴建立平面直角坐标系,则M(,12,0),设P(x,y)则|MP|2=y2+(x-12)2点P到直线A1D1的距离为x2+1由题意得4(x2+1)=
y2+(x-12)2+4即3(x+12)2-y2=74选C16.若直线x=1的倾斜角为α,则α等于
______.答案:因为直线x=1与y轴平行,所以直线x=1的倾斜角为90°.故为:90°17.已知在一场比赛中,甲运动员赢乙、丙的概率分别为0.8,0.7,比赛没有平局.若甲分别与乙、丙各进行一场比赛,则甲取得一胜一负的概率是______.答案:根据题意,甲取得一胜一负包含两种情况,甲胜乙负丙,概率为:0.8×0.3=0.24;甲胜丙负乙,概率为:0.2×0.7=0.14;∴甲取得一胜一负的概率为0.24+0.14=0.38故为0.3818.对变量x、y有观测数据(xi,yi)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(ui,vi)(i=1,2,…,10),得散点图2.由这两个散点图可以判断()
A.变量x与y正相关,u与v正相关
B.变量x与y正相关,u与v负相关
C.变量x与y负相关,u与v正相关
D.变量x与y负相关,u与v负相关答案:C19.已知函数f(x),如果对任意一个三角形,只要它的三边长a,b,c都在f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则称f(x)为“保三角形函数”.在函数①f1(x)=x,②f2(x)=x,③f3(x)=x2中,其中______是“保三角形函数”.(填上正确的函数序号)答案:f1(x),f2(x)是“保三角形函数”,f3(x)不是“保三角形函数”.任给三角形,设它的三边长分别为a,b,c,则a+b>c,不妨假设a≤c,b≤c,由于a+b>a+b>c>0,所以f1(x),f2(x)是“保三角形函数”.对于f3(x),3,3,5可作为一个三角形的三边长,但32+32<52,所以不存在三角形以32,32,52为三边长,故f3(x)不是“保三角形函数”.故为:①②.20.在△ABC所在平面存在一点O使得OA+OB+OC=0,则面积S△OBCS△ABC=______.答案:∵OA+OB+OC=0,∴OB+
OC=AO,设OB+OC=OD∴O是AD的中点,要求面积之比的两个三角形是同底的三角形,∴面积之比等于三角形的高之比,∴比值是13,故为:13.21.执行如图所示的程序框图,输出的S值为()
A.2
B.4
C.8
D.16
答案:C22.把平面上一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是()
A.一条线段
B.一段圆弧
C.圆上一群孤立点
D.一个单位圆答案:D23.
如图梯形A1B1C1D1是一平面图形ABCD的斜二侧直观图,若A1D1∥O′y′A1B1∥C1D1,A1B1=C1D1=2,A1D1=1,则四边形ABCD的面积是()
A.10
B.5
C.2
D.10
答案:B24.已知实数a,b满足等式2a=3b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;
⑤a=b.其中可能成立的关系式有()
A.①②③
B.①②⑤
C.①③⑤
D.③④⑤答案:B25.若a=(1,1),则|a|=______.答案:由题意知,a=(1,1),则|a|=1+1=2,故为:2.26.以抛物线y2=2px(p>0)的焦半径|PF|为直径的圆与y轴位置关系是______.答案:根据抛物线定义可知|PF|=p2,而圆的半径为p2,圆心为(p2,0),|PF|正好等于所求圆的半径,进而可推断圆与y轴位置关系是相切.27.如图程序输出的结果是()
a=3,
b=4,
a=b,
b=a,
PRINTa,b
END
A.3,4
B.4,4
C.3,3
D.4,3答案:B28.已知m,n为正整数.
(Ⅰ)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;
(Ⅱ)对于n≥6,已知(1-1n+3)n<12,求证(1-mn+3)n<(12)m,m=1,2…,n;
(Ⅲ)求出满足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整数n.答案:解法1:(Ⅰ)证:用数学归纳法证明:当x=0时,(1+x)m≥1+mx;即1≥1成立,x≠0时,证:用数学归纳法证明:(ⅰ)当m=1时,原不等式成立;当m=2时,左边=1+2x+x2,右边=1+2x,因为x2≥0,所以左边≥右边,原不等式成立;(ⅱ)假设当m=k时,不等式成立,即(1+x)k≥1+kx,则当m=k+1时,∵x>-1,∴1+x>0,于是在不等式(1+x)k≥1+kx两边同乘以1+x得(1+x)k•(1+x)≥(1+kx)(1+x)=1+(k+1)x+kx2≥1+(k+1)x,所以(1+x)k+1≥1+(k+1)x.即当m=k+1时,不等式也成立.综合(ⅰ)(ⅱ)知,对一切正整数m,不等式都成立.(Ⅱ)证:当n≥6,m≤n时,由(Ⅰ)得(1-1n+3)m≥1-mn+3>0,于是(1-mn+3)n≤(1-1n+3)nm=[(1-1n+3)n]m<(12)m,m=1,2,n.(Ⅲ)由(Ⅱ)知,当n≥6时,(1-1n+3)n+(1-2n+3)n++(1-nn+3)n<12+(12)^++(12)n=1-12n<1,∴(n+2n+3)n+(n+1n+3)n++(3n+3)n<1.即3n+4n+…+(n+2)n<(n+3)n.即当n≥6时,不存在满足该等式的正整数n.故只需要讨论n=1,2,3,4,5的情形:当n=1时,3≠4,等式不成立;当n=2时,32+42=52,等式成立;当n=3时,33+43+53=63,等式成立;当n=4时,34+44+54+64为偶数,而74为奇数,故34+44+54+64≠74,等式不成立;当n=5时,同n=4的情形可分析出,等式不成立.综上,所求的n只有n=2,3.解法2:(Ⅰ)证:当x=0或m=1时,原不等式中等号显然成立,下用数学归纳法证明:当x>-1,且x≠0时,m≥2,(1+x)m>1+mx.①(ⅰ)当m=2时,左边=1+2x+x2,右边=1+2x,因为x≠0,所以x2>0,即左边>右边,不等式①成立;(ⅱ)假设当m=k(k≥2)时,不等式①成立,即(1+x)k>1+kx,则当m=k+1时,因为x>-1,所以1+x>0.又因为x≠0,k≥2,所以kx2>0.于是在不等式(1+x)k>1+kx两边同乘以1+x得(1+x)k•(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x,所以(1+x)k+1>1+(k+1)x.即当m=k+1时,不等式①也成立.综上所述,所证不等式成立.(Ⅱ)证:当n≥6,m≤n时,∵(1-1n+3)n<12,∴[(1-1n+3)m]n<(12)m,而由(Ⅰ),(1-1n+3)m≥1-mn+3>0,∴(1-mn+3)n≤[(1-1n+3)m]n<(12)m.(Ⅲ)假设存在正整数n0≥6使等式3n0+4n0++(n0+2)n0=(n0+3)n0成立,即有(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=1.②又由(Ⅱ)可得(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=(1-n0n0+3)n0+(1-n0-1n0+3)n0++(1-1n0+3)n0<(12)n0+(12)n0-1++12=1-12n0<1,与②式矛盾.故当n≥6时,不存在满足该等式的正整数n.下同解法1.29.设a∈(0,1)∪(1,+∞),对任意的x∈(0,12],总有4x≤logax恒成立,则实数a的取值范围是______.答案:∵a∈(0,1)∪(1,+∞),当0<x≤12时,函数y=4x的图象如下图所示:∵对任意的x∈(0,12],总有4x≤logax恒成立,若不等式4x<logax恒成立,则y=logax的图象恒在y=4x的图象的上方(如图中虚线所示)∵y=logax的图象与y=4x的图象交于(12,2)点时,a=22,故虚线所示的y=logax的图象对应的底数a应满足22<a<1.故为:(22,1).30.如图,空间四边形ABCD中,M、G分别是BC、CD的中点,则AB+12BC+12BD等()A.ADB.GAC.AGD.MG答案:∵M、G分别是BC、CD的中点,∴12BC=BM,12BD=MC∴AB+12BC+12BD=AB+BM+MC=AM+MC=AC故选C31.参数方程(0<θ<2π)表示()
A.双曲线的一支,这支过点(1,)
B.抛物线的一部分,这部分过(1,)
C.双曲线的一支,这支过点(-1,)
D.抛物线的一部分,这部分过(-1,)答案:B32.
008年北京成功举办了第29届奥运会,中国取得了51金、21银、28铜的骄人成绩.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷赛前准备用12000元预定15张下表中球类比赛的门票:
比赛项目
票价(元/场)
篮球
1000
足球
800
乒乓球
500
若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票数与乒乓球门票数相同,且足球门票的费用不超过男篮门票的费用,则可以预订男篮门票数为
A.2
B.3
C.4
D.5
答案:D33.如图所示,已知P是平行四边形ABCD所在平面外一点,连结PA、PB、PC、PD,点E、F
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 信息技术项目招投标跟踪
- 住宅小区钻孔桩施工协议
- 水库水质净化施工合同
- 物流行业工作与休息安排
- 厦门市民宿卫生防疫措施
- 学校活动巴士租赁服务合同
- 影视作品授权合同
- 互联网行业产品经理培训大纲
- 住宅小区配电房施工协议
- 运动器材公司著作权保护
- 英语漫谈今日中国学习通超星期末考试答案章节答案2024年
- 福建师范大学《教育学(含教师职业道德)》2023-2024学年第一学期期末试卷
- 苹果三星专利之争
- 下肢康复机器人课件
- 《Java程序设计应用开发》全套教学课件
- 必背知识点梳理-2024-2025学年人教版生物七年级上册
- 2024-2030年全球及中国数据科学平台行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2024-2030年中国非物质文化遗产行业市场深度分析及竞争格局与投资策略研究报告
- 2023-2024学年部编版道德与法治三年级上册期末检测题及答案(共3套)
- 2024年山东省青岛市中考语文试卷(含答案)
- 绩效考核管理办法(15篇)
评论
0/150
提交评论