2023年烟台黄金职业学院高职单招(数学)试题库含答案解析_第1页
2023年烟台黄金职业学院高职单招(数学)试题库含答案解析_第2页
2023年烟台黄金职业学院高职单招(数学)试题库含答案解析_第3页
2023年烟台黄金职业学院高职单招(数学)试题库含答案解析_第4页
2023年烟台黄金职业学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年烟台黄金职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为4的等腰三角形,左视图是一个底边长为6、高为4的等腰三角形.则该几何体的体积为______.答案:由题意几何体复原是一个底面边长为8,6的距离,高为4,且顶点在底面的射影是底面矩形的中心的四棱锥.底面矩形的面积是48所以几何体的体积是:13×46×4=64故为:64.2.某人射击一次击中的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为()

A.

B.

C.

D.答案:A3.如图所示,CD为Rt△ABC斜边AB边上的中线,CE⊥CD,CE=103,连接DE交BC于点F,AC=4,BC=3.

求证:(1)△ABC∽△EDC;

(2)DF=EF.答案:证明:(1)∵CD为Rt△ABC斜边AB边上的中线∴CD=12AB=12AC2+BC2=52.∴CECD=10352=43=ACBC,∠ACB=∠DCE=90°.∴△ABC∽△EDC.(2)因为△ABC∽△EDC∴∠B=∠CDE,∠E=∠A.由CD为Rt△ABC斜边AB边上的中线得:CD=AD=DB?∠B=∠DCB,∠A=∠DCA∴∠DCB=∠CDE?DF=CF;又因为:∠DCA+∠DCB=∠DCB+∠BCE=90°;∴∠DCA=∠BCE=∠A=∠E∴CF=EF.∴DF=EF.4.在区间[-1,1]上任取两个数s和t,则关于x的方程x2+sx+t=0的两根都是正数的概率是[

]A.

B.

C.

D.答案:A5.圆柱的底面积为S,侧面展开图为正方形,那么这个圆柱的侧面积为()A.πSB.2πSC.3πSD.4πS答案:设圆柱的底面半径是R,母线长是l,∵圆柱的底面积为S,侧面展开图为正方形,∴πR2=S,且l=2πR,∴圆柱的侧面积为2πRl=4πS.故选D.6.已知直线3x+2y-3=0和6x+my+1=0互相平行,则它们之间的距离是()

A.

B.

C.

D.答案:B7.在△ABC中,“A=45°”是“sinA=22”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:当A=45°时,sinA=22成立.若当A=135°时,满足sinA=22.所以,“A=45°”是“sinA=22”的充分不必要条件.故选A.8.已知:|.a|=1,|.b|=2,<a,b>=60°,则|a+b|=______.答案:由题意|a+b|2=(a+b)2=a2+2b?a+b2=1+4+2×2×1×cos<a,b>=5+2=7∴|a+b|=7故为79.如图所示,在几何体ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,点F是AE的中点.求AB与平面BDF所成角的正弦值.答案:AB与平面BDF所成角的正弦值为.解析:以点B为原点,BA、BC、BE所在的直线分别为x,y,z轴,建立如图所示的空间直角坐标系,则B(0,0,0),A(2,0,0),C(0,2,0),D(0,2,1),E(0,0,2),F(1,0,1).∴=(0,2,1),=(1,-2,0).设平面BDF的一个法向量为n=(2,a,b),∵n⊥,n⊥,∴即解得a=1,b=-2.∴n=(2,1,-2).设AB与平面BDF所成的角为,则法向量n与的夹角为-,∴cos(-)===,即sin=,故AB与平面BDF所成角的正弦值为.10.给出下列问题:

(1)求面积为1的正三角形的周长;

(2)求键盘所输入的三个数的算术平均数;

(3)求键盘所输入两个数的最小数;

(4)求函数f(x)=2xx2(x≥3)(x<3)当自变量取相应值时的函数值.

其中不需要用条件语句描述的算法的问题有()A.1个B.2个C.3个D.4个答案:(1)求面积为1的正三角形的周长用顺序结构即可,故不需要用条件语句描述;(2)求键盘所输入的三个数的算术平均数用顺序结构即可解决问题,不需要用条件语句描述;(3)求键盘所输入两个数的最小数,由于要作出判断,找出最小数,故本问题的解决要用到条件语句描述;(4)求函数f(x)=2xx2(x≥3)(x<3)当自变量取相应值时的函数值,由于此函数是一个分段函数,所以要用条件结构选择相应的函数解析式,需要用条件语句描述.综上,(3)(4)两个问题要用到条件语句描述,(1),(2)不需要用条件语句描述故选B11.设a,b,λ都为正数,且a≠b,对于函数y=x2(x>0)图象上两点A(a,a2),B(b,b2).

(1)若AC=λCB,则点C的坐标是______;

(2)过点C作x轴的垂线,交函数y=x2(x>0)的图象于D点,由点C在点D的上方可得不等式:______.答案:(1)设点C(x,y),因为点A(a,a2),B(b,b2),AC=λCB,则(x-a,y-a2)=λ(b-x,b2-y),所以:x=a+λb1+λ,y=a2+λb21+λ(2)因为点C在点D的上方,则y>yD,所以a2+λb21+λ>(a+λb1+λ)212.某种细菌在培养过程中,每15分钟分裂一次(由一个分裂成两个),这种细菌由1个繁殖成4096个需经过()A.12小时B.4小时C.3小时D.2小时答案:设共分裂了x次,则有2x=4

096,∴2x=212,又∵每次为15分钟,∴共15×12=180(分钟),即3个小时.故为C13.方程(x2-9)2(x2-y2)2=0表示的图形是()

A.4个点

B.2个点

C.1个点

D.四条直线答案:D14.集合{0,1}的子集有()个.A.1个B.2个C.3个D.4个答案:根据题意,集合{0,1}的子集有{0}、{1}、{0,1}、?,共4个,故选D.15.已知0<α<π2,方程x2sinα+y2cosα=1表示焦点在y轴上的椭圆,则α的取值范围______.答案:方程x2sinα+y2cosα=1化成标准形式得:x21sinα+y21cosα=1.∵方程表示焦点在y轴上的椭圆,∴1cosα>1sinα>0,解之得sinα>cosα>0∵0<α<π2,∴π4<α<π2,即α的取值范围是(π4,π2)故为:(π4,π2)16.设与都是直线Ax+By+C=0(AB≠0)的方向向量,则下列关于与的叙述正确的是()

A.=

B.与同向

C.∥

D.与有相同的位置向量答案:C17.已知△ABC的三个顶点A(-2,-1)、B(1,3)、C(2,2),则△ABC的重心坐标为______.答案:设△ABC的重心坐标为(x,y),则有三角形的重心坐标公式可得x=-2+1+23=13,y=-1+3+23=43,故△ABC的重心坐标为(13,43),故为(13,43).18.如图,△ABC中,AD=2DB,AE=3EC,CD与BE交于F,若AF=xAB+yAC,则()A.x=13,y=12B.x=14,y=13C.x=37,y=37D.x=25,y=920答案:过点F作FM∥AC、FN∥AB,分别交AB、AC于点M、N∵FM∥AC,∴FMAC=DMAD且FMAE=BMAB∵AD=2DB,AE=3EC,∴AD=23AB,AE=34AC.由此可得AM=13AB同理可得AN=12AC∵四边形AMFN是平行四边形∴由向量加法法则,得AF=13AB+12AC∵AF=xAB+yAC,∴根据平面向量基本定理,可得x=13,y=12故选:A19.下列命题中,正确的是()

A.若a∥b,则a与b的方向相同或相反

B.若a∥b,b∥c,则a∥c

C.若两个单位向量互相平行,则这两个单位向量相等

D.若a=b,b=c,则a=c答案:D20.已知直线l的参数方程为x=3+12ty=7+32t(t为参数),曲线C的参数方程为x=4cosθy=4sinθ(θ为参数).

(I)将曲线C的参数方程转化为普通方程;

(II)若直线l与曲线C相交于A、B两点,试求线段AB的长.答案:(I)由x=4cosθy=4sinθ得x2=16cos2θy2=16sin2θ故圆的方程为x2+y2=16.(II)把x=3+12ty=7+32t代入方程x2+y2=16,得t2+83t+36=0∴线段AB的长为|AB|=|t1-t2|=(t1+t2)2-4t1t2=43.21.直线x3+y4=t被两坐标轴截得的线段长度为1,则t的值是

______.答案:令y=0,得:x=3t;令x=0,得:y=4t,所以被两坐标轴截得的线段长度为(3t)2+(4t)2=|5t|=1所以t=±15故为±1522.椭圆焦点在x轴,离心率为32,直线y=1-x与椭圆交于M,N两点,满足OM⊥ON,求椭圆方程.答案:设椭圆方程x2a2+y2b2=1(a>b>0),∵e=32,∴a2=4b2,即a=2b.∴椭圆方程为x24b2+y2b2=1.把直线方程代入化简得5x2-8x+4-4b2=0.设M(x1,y1)、N(x2,y2),则x1+x2=85,x1x2=15(4-4b2).∴y1y2=(1-x1)(1-x2)=1-(x1+x2)+x1x2=15(1-4b2).由于OM⊥ON,∴x1x2+y1y2=0.解得b2=58,a2=52.∴椭圆方程为25x2+85y2=1.23.已知函数f(x)=ax,(a>0,a≠1)的图象经过点P(12,12),则常数a的值为()A.2B.4C.12D.14答案:∵函数f(x)=ax,(a>0,a≠1)的图象经过点P(12,12),∴a12=12,?a=14.故选D.24.已知集合A={0,2,a2},B={1,a},若A∪B={0,1,2,4},则实数a的值为______.答案:根据题意,集合A={0,2,a2},B={1,a},且A∪B={0,1,2,4},则有a=4,或a=4,a=4时,A={0,2,16},B={1,4},A∪B={0,1,2,4,16},不合题意,舍去;a=2时,A={0,2,4},B={1,2},A∪B={0,1,2,4},符合;故a=2.25.用数学归纳法证明“<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是()

A.2k-1

B.2k-1

C.2k

D.2k+1答案:C26.根据一组数据判断是否线性相关时,应选用(

A.散点图

B.茎叶图

C.频率分布直方图

D.频率分布折线图答案:A27.已知椭圆的中心在原点,对称轴为坐标轴,焦点在x轴上,短轴的一个顶点B与两个焦点F1,F2组成的三角形的周长为4+23,且∠F1BF2=2π3,求椭圆的标准方程.答案::设长轴长为2a,焦距为2c,则在△F2OB中,由∠F2BO=π3得:c=32a,所以△F2BF1的周长为2a+2c=2a+3a=4+23,∴a=2,c=3,∴b2=1;故所求椭圆的标准方程为x24+y2=1.28.

已知向量

=(4,3),=(1,2),若向量

+k

-

垂直,则k的值为(

)A.

233B.7C.-

115D.-

233答案:考点:数量积判断两个平面向量的垂直关系.29.如果过点A(x,4)和(-2,x)的直线的斜率等于1,那么x=()A.4B.1C.1或3D.1或4答案:由于直线的斜率等于1,故1=4-xx-(-2),解得x=1故选B30.(选做题)已知x+2y=1,则x2+y2的最小值是______.答案:x2+y2表示(0,0)到x+2y=1上点的距离的平方∴x2+y2的最小值是(0,0)到x+2y=1的距离d的平方据点到直线的距离公式得d=11+4=15∴x2+y2的最小值是15故为1531.甲射击运动员击中目标为事件A,乙射击运动员击中目标为事件B,则事件A,B为()

A.互斥事件

B.独立事件

C.对立事件

D.不相互独立事件答案:B32.如图,某公司制造一种海上用的“浮球”,它是由两个半球和一个圆柱筒组成.其中圆柱的高为2米,球的半径r为0.5米.

(1)这种“浮球”的体积是多少立方米(结果精确到0.1m3)?

(2)假设该“浮球”的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为20元,半球形部分每平方米建造费用为30元.求该“浮球”的建造费用(结果精确到1元).答案:(1)∵球的半径r为0.5米,∴两个半球的体积之和为V球=43πr3=43π?18=16πm3,∵圆柱的高为2米,∴V圆柱=πr2?h=π×14×2=12πm3,∴该“浮球”的体积是:V=V球+V圆柱=23π≈2.1m3;(2)圆柱筒的表面积为2πrh=2πm2;两个半球的表面积为4πr2=πm2,∵圆柱形部分每平方米建造费用为20元,半球形部分每平方米建造费用为30元,∴该“浮球”的建造费用为2π×20+π×30=70π≈220元.33.圆x2+y2=1和圆x2+y2-6y+5=0的位置关系是()

A.外切

B.内切

C.外离

D.内含答案:A34.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是()A.甲B.乙C.丙D.丁答案:若甲是获奖的歌手,则都说假话,不合题意.若乙是获奖的歌手,则甲、乙、丁都说真话,丙说假话,不符合题意.若丁是获奖的歌手,则甲、丁、丙都说假话,乙说真话,不符合题意.故获奖的歌手是丙故先C35.若矩阵满足下列条件:①每行中的四个数所构成的集合均为{1,2,3,4};②四列中有且只有两列的上下两数是相同的.则这样的不同矩阵的个数为()

A.24

B.48

C.144

D.288答案:C36.已知G是△ABC的重心,O是平面ABC外的一点,若λOG=OA+OB+OC,则λ=______.答案:如图,正方体中,OA+OB+OC=OD=3OG,∴λ=3.故为3.37.已知,,且与垂直,则实数λ的值为()

A.±

B.1

C.-

D.答案:D38.若事件与相互独立,且,则的值等于A.B.C.D.答案:B解析:事件“”表示的意义是事件与同时发生,因为二者相互独立,根据相互独立事件同时发生的概率公式得:.39.为了调查高中生的性别与是否喜欢足球之间有无关系,一般需要收集以下数据______.答案:为了调查高中生的性别与是否喜欢足球之间有无关系,一般需要收集男女生中喜欢或不喜欢足球的人数,再得出2×2列联表,最后代入随机变量的观测值公式,得出结果.故为:男女生中喜欢或不喜欢足球的人数.40.等于()

A.a16

B.a8

C.a4

D.a2答案:C41.如图,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为2,那么

这个几何体的体积为()A.13B.23C.43D.2答案:根据三视图,可知该几何体是三棱锥,右图为该三棱锥的直观图,三棱锥的底面是一个腰长是2的等腰直角三角形,∴底面的面积是12×2×2=2垂直于底面的侧棱长是2,即高为2,∴三棱锥的体积是13×2×2=43故选C.42.下列说法:

①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选择的模型比较合适;

②用相关指数可以刻画回归的效果,值越大说明模型的拟和效果越好;

③比较两个模型的拟和效果,可以比较残差平方和的大小,残差平方和越小的模型拟和效果越好.

其中说法正确的个数为()

A.0个

B.1个

C.2个

D.3个答案:C43.数列{an}满足a1=1且an+1=(1+1n2+n)an+12n(n≥1).

(Ⅰ)用数学归纳法证明:an≥2(n≥2);

(Ⅱ)已知不等式ln(1+x)<x对x>0成立,证明:an<e2(n≥1),其中无理数e=2.71828….答案:(Ⅰ)证明:①当n=2时,a2=2≥2,不等式成立.②假设当n=k(k≥2)时不等式成立,即ak≥2(k≥2),那么ak+1=(1+1k(k+1))ak+12k≥2.这就是说,当n=k+1时不等式成立.根据(1)、(2)可知:ak≥2对所有n≥2成立.(Ⅱ)由递推公式及(Ⅰ)的结论有an+1=(1+1n2+n)an+12n≤(1+1n2+n+12n)an(n≥1)两边取对数并利用已知不等式得lnan+1≤ln(1+1n2+n+12n)+lnan≤lnan+1n2+n+12n故lnan+1-lnan≤1n(n+1)+12n(n≥1).上式从1到n-1求和可得lnan-lna1≤11×2+12×3+…+1(n-1)n+12+122+…+12n-1=1-12+(12-13)+…+1n-1-1n+12•1-12n1-12=1-1n+1-12n<2即lnan<2,故an<e2(n≥1).44.如图所示,已知点P在正方体ABCD—A′B′C′D′的对角线

BD′上,∠PDA=60°.

(1)求DP与CC′所成角的大小;

(2)求DP与平面AA′D′D所成角的大小.答案:(1)DP与CC′所成的角为45°(2)DP与平面AA′D′D所成的角为30°解析:如图所示,以D为原点,DA为单位长度建立空间直角坐标系D—xyz.则=(1,0,0),=(0,0,1).连接BD,B′D′.在平面BB′D′D中,延长DP交B′D′于H.设="(m,m,1)"(m>0),由已知〈,〉=60°,由·=||||cos〈,〉,可得2m=.解得m=,所以=(,,1).(1)因为cos〈,〉==,所以〈,〉=45°,即DP与CC′所成的角为45°.(2)平面AA′D′D的一个法向量是=(0,1,0).因为cos〈,〉==,所以〈,〉=60°,可得DP与平面AA′D′D所成的角为30°.45.

点M分有向线段的比为λ,已知点M1(1,5),M2(2,3),λ=-2,则点M的坐标为()

A.(3,8)

B.(1,3)

C.(3,1)

D.(-3,-1)答案:C46.已知点A(1,-2,0)和向量a=(-3,4,12),若AB=2a,则点B的坐标为______.答案:∵向量a=(-3,4,12),AB=2a,∴AB=(-6,8,24)∵点A(1,-2,0)∴B(-6+1,8-2,24-0)=(-5,6,24)故为:(-5,6,24)47.证明:等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.答案:证明见解析:建立如图所示的直角坐标系.设,,其中,.则直线的方程为,直线的方程为.设底边上任意一点为,则到的距离;到的距离;到的距离.因为,所以,结论成立.48.已知向量,,则“,λ∈R”成立的必要不充分条件是()

A.

B与方向相同

C.

D.答案:D49.在直角坐标系xoy

中,已知曲线C1:x=t+1y=1-2t(t为参数)与曲线C2:x=asinθy=3cosθ(θ为参数,a>0

有一个公共点在X轴上,则a等于______.答案:曲线C1:x=t+1y=1-2t(t为参数)化为普通方程:2x+y-3=0,令y=0,可得x=32曲线C2:x=asinθy=3cosθ(θ为参数,a>0

)化为普通方程:x2a2+y29=1∵两曲线有一个公共点在x轴上,∴94a2=1∴a=32故为:3250.如图,从圆O外一点P引圆O的切线PA和割线PBC,已知PA=22,PC=4,圆心O到BC的距离为3,则圆O的半径为______.答案:∵PA为圆的切线,PBC为圆的割线,由线割线定理得:PA2=PB?PC又∵PA=22,PC=4,∴PB=2,BC=2又∵圆心O到BC的距离为3,∴R=2故为:2第2卷一.综合题(共50题)1.在(1+x)3+(1+x)4…+(1+x)7的展开式中,含x项的系数是______.(用数字作答)答案:(1+x)3+(1+x)4…+(1+x)7的展开式中,含x项的系数是C31+C41+C51+…+C71=25故为:252.山东鲁洁棉业公司的科研人员在7块并排、形状大小相同的试验田上对某棉花新品种进行施化肥量x对产量y影响的试验,得到如下表所示的一组数据(单位:kg).

施化肥量x15202530354045棉花产量y330345365405445450455(1)画出散点图;

(2)判断是否具有相关关系.答案:(1)根据已知表格中的数据可得施化肥量x和产量y的散点图如下所示:(2)根据(1)中散点图可知,各组数据对应点大致分布在一个条形区域内(一条直线附近)故施化肥量x和产量y具有线性相关关系.3.沿着正四面体OABC的三条棱OA、OB、OC的方向有大小等于1、2、3的三个力f1、f2、f3.试求此三个力的合力f的大小以及此合力与三条棱所夹角的余弦.答案:用a、b、c分别代表棱OA、OB、OC上的三个单位向量,则f1=a,f2=2b,f3=3c,则f=f1+f2+f3=a+2b+3c,∴|f|2=(a+2b+3c)?(a+2b+3c)=|a|2+4|b|2+9|c|2+4a?b+6a?c+12b?c=1+4+9+4|a||b|cos<a,b>+6|a||c|cos<a,c>+12|b||c|cos<b,c>=14+4cos60°+6cos60°+12cos60°=14+2+3+6=25.∴|f|=5,即所求合力的大小为5,且cos<f,a>=f?a|f||a|=|a|2+2a?b+3a?c5=1+1+325=710.同理,可得cos<f,b>=45,cos<f,c>=910.4.已知集合A到B的映射f:x→y=2x+1,那么集合A中元素2在B中的象是()A.2B.5C.6D.8答案:∵x=2,∴y=2x+1则y=2×2+1=5,那么集合A中元素2在B中的象是5故选B.5.已知线段AB的两端点坐标为A(9,-3,4),B(9,2,1),则线段AB与坐标平面()A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案:∵A(9,-3,4),B(9,2,1),∴AB=(9,2,1)-(9,-3,4)=(0,5,-3),∵yOz平面内的向量的一般形式为a=(0,y,z)∴向量AB∥a,可得AB∥平面yOz.故选:C6.设二项式(33x+1x)n的展开式的各项系数的和为P,所有二项式系数的和为S,若P+S=272,则n=()A.4B.5C.6D.8答案:根据题意,对于二项式(33x+1x)n的展开式的所有二项式系数的和为S,则S=2n,令x=1,可得其展开式的各项系数的和,即P=4n,结合题意,有4n+2n=272,解可得,n=4,故选A.7.已知一种材料的最佳加入量在110g到210g之间.若用0.618法安排试验,则第一次试点的加入量可以是(

)g。答案:171.8或148.28.探测某片森林知道,可采伐的木材有10万立方米.设森林可采伐木材的年平均增长率为8%,则经过______年,可采伐的木材增加到40万立方米.答案:设经过n年可采伐本材达到40万立方米则有10×(1+8%)n=40即(1+8%)n=4故有n=log1.084,解得n≈19即经过19年,可采伐的木材增加到40万立方米故为199.设a、b、c均为正数.求证:≥.答案:证明略解析:证明

方法一

∵+3=="(a+b+c)"=[(a+b)+(a+c)+(b+c)]≥

(·+·+·)2=.∴+≥.方法二

令,则∴左边=≥=.∴原不等式成立.10.极点到直线ρ(cosθ+sinθ)=3的距离是

______.答案:将原极坐标方程ρ(cosθ+sinθ)=3化为:直角坐标方程为:x+y=3,原点到该直线的距离是:d=|3|2=62.∴所求的距离是:62.故填:62.11.已知正方体ABCD-A1B1C1D1中,M、N分别为BB1、C1D1的中点,建立适当的坐标系,求平面AMN的法向量.答案:(-3,2,-4)为平面AMN的一个法向量.解析:以D为原点,DA、DC、DD1所在直线为坐标轴建立空间直角坐标系.(如图所示).设棱长为1,则A(1,0,0),M(1,1,),N(0,,1).∴=(0,1,),=(-1,,1).设平面AMN的法向量n=(x,y,z)∴令y=2,∴x=-3,z=-4.∴n=(-3,2,-4).∴(-3,2,-4)为平面AMN的一个法向量.12.

选修1:几何证明选讲

如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD,求证:

(1)l是⊙O的切线;

(2)PB平分∠ABD.答案:证明:(1)连接OP,因为AC⊥l,BD⊥l,所以AC∥BD.又OA=OB,PC=PD,所以OP∥BD,从而OP⊥l.因为P在⊙O上,所以l是⊙O的切线.(2)连接AP,因为l是⊙O的切线,所以∠BPD=∠BAP.又∠BPD+∠PBD=90°,∠BAP+∠PBA=90°,所以∠PBA=∠PBD,即PB平分∠ABD.13.对任意实数x,y,定义运算x*y=ax+by+cxy,其中a,b,c是常数,等式右边的运算是通常的加法和乘法运算。已知1*2=3,2*3=4,并且有一个非零常数m,使得对任意实数x,都有x*m=x,则m的值是(

)。答案:414.已知A(2,1,1),B(1,1,2),C(2,0,1),则下列说法中正确的是()A.A,B,C三点可以构成直角三角形B.A,B,C三点可以构成锐角三角形C.A,B,C三点可以构成钝角三角形D.A,B,C三点不能构成任何三角形答案:∵|AB|=2,|BC|=3,|AC|=1,∴|BC|2=|AC|2+|AB|2,∴A,B,C三点可以构成直角三角形,故选A.15.利用计算机随机模拟方法计算y=x2与y=4所围成的区域Ω的面积时,可以先运行以下算法步骤:

第一步:利用计算机产生两个在[0,1]区间内的均匀随机数a,b;

第二步:对随机数a,b实施变换:答案:根据题意可得,点落在y=x2与y=4所围成的区域Ω的点的概率是100-34100=66100,矩形的面积为4×4=16,阴影部分的面积为S,则有S16=66100,∴S=10.56.故为:10.56.16.在⊙O中,弦AB=1.8cm,圆周角∠ACB=30°,则⊙O的直径等于()

A.3.2cm

B.3.4cm

C.3.6cm

D.4.0cm答案:C17.已知F1(-8,3),F2(2,3),动点P满足PF1-PF2=10,则点P的轨迹是______.答案:由于两点间的距离|F1F2|=10,所以满足条件|PF1|-|PF2|=10的点P的轨迹应是一条射线.故为一条射线.18.

如图,已知PA为⊙O的切线,PBC为⊙O的割线,PA=6,PB=BC,⊙O的半径OC=5,那么弦BC的弦心距OM=()

A.4

B.3

C.5

D.6

答案:A19.在同一个坐标系中画出函数y=ax,y=sinax的部分图象,其中a>0且a≠1,则下列所给图象中可能正确的是()

A.

B.

C.

D.

答案:D20.为了考察两个变量x和y之间的线性相关性,甲、乙两位同学各自独立地做10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1和l2,已知两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,那么下列说法正确的是()

A.l1和l2必定平行

B.l1与l2必定重合

C.l1和l2有交点(s,t)

D.l1与l2相交,但交点不一定是(s,t)答案:C21.由小正方体木块搭成的几何体的三视图如图所示,则搭成该几何体的小正方体木块有()

A.6块

B.7块

C.8块

D.9块答案:B22.已知点P为△ABC所在平面上的一点,且,其中t为实数,若点P落在△ABC的内部,则t的取值范围是()

A.

B.

C.

D.答案:D23.一个口袋中有红球3个,白球4个.

(Ⅰ)从中不放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,求恰好第2次中奖的概率;

(Ⅱ)从中有放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,连续摸4次,求中奖次数X的数学期望E(X).答案:(I)“恰好第2次中奖“即为“第一次摸到的2个白球,第二次至少有1个红球”,其概率为C24C27×C23+C13C12C25=935;(II)摸一次中奖的概率为p=C23+C13C14C27=57,由条件知X~B(4,p),∴EX=np=4×57=207.24.2010年广州亚运会乒乓球男单决赛中,马龙与王皓在前三局的比分分别是9:11、11:8、11:7,已知马琳与王皓的水平相当,比赛实行“七局四胜”制,即先赢四局者胜,求(1)王皓获胜的概率;

(2)比赛打满七局的概率.(3)记比赛结束时的比赛局数为ξ,求ξ的分布列及数学期望.答案:(1)在马龙先前三局赢两局的情况下,王皓取胜有两种情况.第一种是王皓连胜三局;第二种是在第四到第六局,王皓赢了两局,第七局王皓赢.在第一种情况下王皓取胜的概率为(12)3=18;在第二种情况下王皓取胜的概率为为C23(12)3×12=316,王皓获胜的概率18+316=516;(3分)(2)比赛打满七局有两种结果:马龙胜或王皓胜.记“比赛打满七局,马龙胜”为事件A,则P(A)=C13(12)3×12=316;记“比赛打满七局,王皓胜”为事件B,则P(B)=C23(12)3×12=316;因为事件A、B互斥,所以比赛打满七局的概率为P(A)+P(B)=38.(7分)(3)比赛结束时,比赛的局数为5,6,7,则打完五局马龙获胜的概率为12×12=14;打完六局马琳获胜的概率为C12(12)2×12=14,王皓取胜的概率为(12)3=18;比赛打满七局,马龙获胜的概率为C13(12)3×12=316,王皓取胜的概率为为C23(12)3×12=316;所以ξ的分布列为ξ567P(ξ)143838Eξ=5×14+6×38+7×38=498.(12分)25.过点(0,2)且与圆x2+y2=4只有一个交点的直线方程是______.答案:∵圆x2+y2=4的圆心是O(0,0),半径r=2,点(0,2)到圆心O(0,0)的距离是d=0+4=2=r,∴点(0,2)在圆x2+y2=4上,∴过点(0,2)且与圆x2+y2=4只有一个交点的直线方程是0x+2y=4,即y=2.故为:y=2.26.已知F1、F2为椭圆x225+y29=1的两个焦点,过F1的直线交椭圆于A、B两点.若|F2A|+|F2B|=12,则|AB|=______.答案:由椭圆的定义得|AF1|+|AF2|=10|BF1|+|BF2|=10两式相加得|AB|+|AF2|+|BF2|=20,即|AB|+12=20,∴|AB|=8.故:827.如图,已知△ABC,过顶点A的圆与边BC切于BC的中点P,与边AB、AC分别交于点M、N,且CN=2BM,点N平分AC.则AM:BM=()

A.2

B.4

C.6

D.7

答案:D28.在数列{an}中,a1=2,an+1=λan+λn+1+(2-λ)2n(n∈N+).(Ⅰ)求a2,a3,a4,并猜想数列{an}的通项公式(不必证明);(Ⅱ)证明:当λ≠0时,数列{an}不是等比数列;(Ⅲ)当λ=1时,试比较an与n2+1的大小,证明你的结论.答案:(Ⅰ)∵a1=2,∴a2=λa1+λ2+2(2-λ)=λ2+4,同理可得,a3=2λ3+8,a4=3λ4+16,猜想an=(n-1)λn+2n.(Ⅱ)假设数列{an}是等比数列,则a1,a2,a3也成等比数列,∴a22=a1•a3⇒(λ2+4)2=2(2λ3+8)⇒λ4-4λ3+8λ2=0,∵λ≠0,∴λ2-4λ+8=0,即(λ-2)2+4=0,但(λ-2)2+4>0,矛盾,∴数列{an}不是等比数列.(Ⅲ)∵λ=1,∴an=(n+1)+2n,∴an-(n2+1)=2n-(n2-n+2),∵当n=1,2,3时,2n=n2-n+2,∴an=n2+1.当n≥4时,猜想2n>n2-n+2,证明如下:当n=4时,显然2k>k2-4+2假设当n=k≥4时,猜想成立,即2k>k2-k+2,则当n=k+1时,2k+1=2•2k>2(k2-k+2),∵2(k2-k+2)-[(k+1)20-(k+1)+2]=(k-1)(k-2)>0∴2k+1>2(k2-k+2)>(k+1)2-(k+1)+2,∴当n≥4时,猜想2n>n2-n+2成立,∴当n≥4时,an>n2+1.29.直三棱柱ABC-A1B1C1中,若CA=a,CB=b,CC1=c,则A1B=()A.a+b-cB.a-b+cC.-a+b+cD.-a+b-c答案:A1B=A1A+AB=-CC1+CB-CA=-c+b-a故选D.30.天气预报说,在今后的三天中每一天下雨的概率均为40%,用随机模拟的方法进行试验,由1、2、3、4表示下雨,由5、6、7、8、9、0表示不下雨,利用计算器中的随机函数产生0~9之间随机整数的20组如下:

907966191925271932812458569683

431257393027556488730113537989

通过以上随机模拟的数据可知三天中恰有两天下雨的概率近似为(

)。答案:0.2531.命题“若b≠3,则b2≠9”的逆命题是______.答案:根据“若p则q”的逆命题是“若q则p”,可得命题“若b≠3,则b2≠9”的逆命题是若b2≠9,则b≠3.故为:若b2≠9,则b≠3.32.(Ⅰ)解关于x的不等式(lgx)2-lgx-2>0;

(Ⅱ)若不等式(lgx)2-(2+m)lgx+m-1>0对于|m|≤1恒成立,求x的取值范围.答案:(Ⅰ)∵(lgx)2-lgx-2>0,∴(lgx+1)(lgx-2)>0.∴lgx<-1或lgx>2.∴0<x<110或x>102.(Ⅱ)设y=lgx,则原不等式可化为y2-(2+m)y+m-1>0,∴y2-2y-my+m-1>0.∴(1-y)m+(y2-2y-1)>0.当y=1时,不等式不成立.设f(m)=(1-y)m+(y2-2y-1),则f(x)是m的一次函数,且一次函数为单调函数.当-1≤m≤1时,若要f(m)>0⇔f(1)>0f(-1)>0.⇔y2-2y-1+1-y>0y2-2y-1+y-1>0.⇔y2-3y>0y2-y-2>0.⇔y<0或y>3y<-1或y>2.则y<-1或y>3.∴lgx<-1或lgx>3.∴0<x<110或x>103.∴x的取值范围是(0,110)∪(103,+∞).33.(1)把二进制数化为十进制数;(2)把化为二进制数.答案:(1)45,(2)解析:(1)先把二进制数写成不同位上数字与2的幂的乘积之和的形式,再按照十进制的运算规则计算出结果;(2)根据二进制数“满二进一”的原则,可以用连续去除或所得商,然后取余数.(1)(2),,,,.所以..这种算法叫做除2余法,还可以用下面的除法算式表示;把上式中各步所得的余数从下到上排列,得到【名师指引】直接插入排序和冒泡排序是两种常用的排序方法,通过该例,我们对比可以发现,直接插入排序比冒泡排序更有效一些,执行的操作步骤更少一些..34.在平行六面体ABCD-A′B′C′D′中,向量是()

A.有相同起点的向量

B.等长的向量

C.共面向量

D.不共面向量答案:C35.若f(x)=ax(a>0且a≠1)的反函数g(x)满足:g()<0,则函数f(x)的图象向左平移一个单位后的图象大致是下图中的()

A.

B.

C.

D.

答案:B36.已知向量,,则“=λ,λ∈R”成立的必要不充分条件是()

A.+=

B.与方向相同

C.⊥

D.∥答案:D37.抛物线y2=4x的焦点坐标为()

A.(0,1)

B.(1,0)

C.(0,2)

D.(2,0)答案:B38.不等式≥0的解集为[-2,3∪[7,+∞,则a-b+c的值是(

)A.2B.-2C.8D.6答案:B解析:∵-a、b的值为-2,7中的一个,x≠c

c=3∴a-b=-(b-a)=-(-2+7)=-5a-b+c=-5+3=-2

选B评析:考察考生对不等式解集的结构特征的理解,关注不等式中等号与不等号的关系。39.AB是圆O的直径,EF切圆O于C,AD⊥EF于D,AD=2,AB=6,则AC长为()

A.

B.3

C.2

D.2答案:A40.F1,F2是椭圆x2a2+y2b2=1的两个焦点,点P是椭圆上任意一点,从F1引∠F1PF2的外角平分线的垂线,交F2P的延长线于M,则点M的轨迹是______.答案:设从F1引∠F1PF2的外角平分线的垂线,垂足为R∵△PF1M中,PR⊥F1M且PR是∠F1PM的平分线∴|MP|=|F1P|,可得|PF1|+|PF2|=|PM|+|PF2|=|MF2|根据椭圆的定义,可得|PF1|+|PF2|=2a,∴|MF2|=2a,即动点M到点F2的距离为定值2a,因此,点M的轨迹是以点F2为圆心,半径为2a的圆.故为:以点F2为圆心,半径为2a的圆.41.正十边形的一个内角是多少度?答案:由多边形内角和公式180°(n-2),∴每一个内角的度数是180°(n-2)n当n=10时.得到一个内角为180°(10-2)10=144°42.已知|a|=1,|b|=2,向量a与b的夹角为60°,则|a+b|=______.答案:∵已知|a|=1,|b|=2,向量a与b的夹角为60°,∴a2=1,b2=4,a?b=1×2×cos60°=1,.∴|.a+b|2=a2+b2+2a?b=1+4+2=7,∴|.a+b|

=7,故为7.43.已知△ABC∽△DEF,且相似比为3:4,S△ABC=2cm2,则S△DEF=______cm2.答案:∵△ABC∽△DEF,且相似比为3:4∴S△ABC:S△DEF=9:16∴S△DEF=329.故为:329.44.在某项体育比赛中,七位裁判为一选手打出分数的茎叶图如图,去掉一个最高分和一个摄低分后,该选手的平均分为()A.90B.91C.92D.93答案:由图表得到评委为该选手打出的7个分数数据为:89,90,90,93,93,94,95.去掉一个最低分89,去掉一个最高分95,该选手得分的平均数为15(90+90+93+93+94)=92.故选C.45.,不等式恒成立的否定是

答案:,不等式成立解析::,不等式成立点评:本题考查推理与证明部分命题的否定,属于容易题46.设a,b是不共线的两个向量,已知=2+m,=+,=-2.若A,B,D三点共线,则m的值为()

A.1

B.2

C.-2

D.-1答案:D47.若点M,A,B,C对空间任意一点O都满足则这四个点()

A.不共线

B.不共面

C.共线

D.共面答案:D48.△ABC中,∠A外角的平分线与此三角形外接圆相交于P,求证:BP=CP.

答案:证明:∠CBP=∠CAP=∠PAD又∠1=∠2由∠CAD=∠ACB+∠CBA=∠ACB+∠CBP+∠2=∠ACB+∠1+∠CBP=∠BCP+∠CBP∴∠BCP=∠CBP,∴BP=CP.49.△ABC是边长为1的正三角形,那么△ABC的斜二测平面直观图△A′B′C′的面积为(

A.

B.

C.

D.答案:D50.将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体是(

)答案:B第3卷一.综合题(共50题)1.极坐标方程pcosθ=表示()

A.一条平行于x轴的直线

B.一条垂直于x轴的直线

C.一个圆

D.一条抛物线答案:B2.某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行.那么安排这6项工程的不同排法种数是______.(用数字作答)答案:依题意,乙必须在甲后,丙必须在乙后,丙丁必相邻,且丁在丙后,只需将剩余两个工程依次插在由甲、乙、丙丁四个工程之间即可,第一个插入时有4种,第二个插入时共5个空,有5种方法;可得有5×4=20种不同排法.故为:203.设两个正态分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)曲线如图所示,则有()

A.μ1<μ2,σ1>σ2

B.μ1<μ2,σ1<σ2

C.μ1>μ2,σ1>σ2

D.μ1>μ2,σ1<σ2

答案:A4.已知随机变量X~B(n,0.8),D(X)=1.6,则n的值是()

A.8

B.10

C.12

D.14答案:B5.两直线3x+y-3=0与6x+my+1=0平行,则它们之间的距离为()

A.4

B.

C.

D.答案:D6.如图,已知⊙O是△ABC的外接圆,AB为直径,若PA⊥AB,PO过AC的中点M,求证:PC是⊙O的切线.答案:证明:连接OC,∵PA⊥AB,∴∠PA0=90°.(1分)∵PO过AC的中点M,OA=OC,∴PO平分∠AOC.∴∠AOP=∠COP.(3分)∴在△PAO与△PCO中有OA=OC,∠AOP=∠COP,PO=PO.∴△PAO≌△PCO.(6分)∴∠PCO=∠PA0=90°.即PC是⊙O的切线.(7分)7.已知a,b,c是正实数,且a+b+c=1,则的最小值为(

)A.3B.6C.9D.12答案:C解析:本题考查均值不等式等知识。将1代入中,得,当且仅当,又,故时不等式取,选C。8.O、B、C为空间四个点,又、、为空间的一个基底,则()

A.O、A、B、C四点不共线

B.O、A、B、C四点共面,但不共线

C.O、A、B、C四点中任意三点不共线

D.O、A、B、C四点不共面答案:D9.设椭圆的左焦点为F,AB为椭圆中过点F的弦,试分析以AB为直径的圆与椭圆的左准线的位置关系.答案:设M为弦AB的中点(即以AB为直径的圆的圆心),A1、B1、M1分别是A、B、M在准线l上的射影(如图).由圆锥曲线的共同性质得|AB|=|AF|+|BF|=e(|AA1|+|BB1|)=2e|MM1|.∵0<e<1,∴|AB|<2|MM1|,即|AB|2<|MM1|.∴以AB为直径的圆与左准线相离.10.某研究小组在一项实验中获得一组数据,将其整理得到如图所示的散点图,下列函数中,最能近似刻画y与t之间关系的是(

A.y=2t

B.y=2t2

C.y=t3

D.y=log2t

答案:D11.设P、Q为两个非空实数集合,定义集合P+Q={x|x=a+b,a∈P,b∈Q},若P={0,2,5},Q={1,2,6},则P+Q中元素的个数是______.答案:∵a∈P,b∈Q,∴a可以为0,2,5三个数,b可以为1,2,6三个数,∴x=0+1=1,x=0+2=2,x=0+6=6,x=2+1=3,x=2+2=4,x=2+6=8,x=5+1=6,x=5+2=7,x=5+6=11,∴P+Q={x|x=a+b,a∈P,b∈Q}={1,2,3,4,6,7,8,11},有8个元素.故为8.12.证明不等式1+12+13+…+1n<2n(n∈N*)答案:证法一:(1)当n=1时,不等式左端=1,右端=2,所以不等式成立;(2)假设n=k(k≥1)时,不等式成立,即1+12+13+…+1k<2k,则1+12+13+…+1k+1<2k+1k+1=2k(k+1)+1k+1<k+(k+1)+1k+1=2k+1,∴当n=k+1时,不等式也成立.综合(1)、(2)得:当n∈N*时,都有1+12+13+…+1n<2n.证法二:设f(n)=2n-(1+12+13+…+1n),那么对任意k∈N*

都有:f(k+1)-f(k)=2(k+1-k)-1k+1=1k+1[2(k+1)-2k(k+1)-1]=1k+1•[(k+1)-2k(k+1)+k]=(k+1-k)2k+1>0∴f(k+1)>f(k)因此,对任意n∈N*

都有f(n)>f(n-1)>…>f(1)=1>0,∴1+12+13+…+1n<2n.13.已知关于x的方程2kx2-2x-3k-2=0的两实根一个小于1,另一个大于1,求实数k的取值范围。答案:解:令,为使方程f(x)=0的两实根一个小于1,另一个大于1,只需或,即或,解得k>0或k<-4,故k的取值范围是k>0或k<-4.14.已知点G是△ABC的重心,点P是△GBC内一点,若,则λ+μ的取值范围是()

A.

B.

C.

D.(1,2)答案:B15.长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为______.答案:设长方体过同一顶点的三条棱长分别为a,b,c,∵从长方体一个顶点出发的三个面的面积分别为3,5,15,∴a?b=3,a?c=5,b?c=15∴(a?b?c)2=152∴a?b?c=15即长方体的体积为15,故为:15.16.过点(-1,3)且垂直于直线x-2y+3=0的直线方程为(

A.2x+y-1=0

B.2x+y-5=0

C.x+2y-5=0

D.x-2y+7=0答案:A17.圆x2+y2-4x=0在点P(1,)处的切线方程为()

A.x+y-2=0

B.x+y-4=0

C.x-y+4=0

D.x-y+2=0答案:D18.已知圆(x+2)2+y2=36的圆心为M,设A为圆上任一点,N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹是()

A.圆

B.椭圆

C.双曲线

D.抛物线答案:B19.如图所示,以直角三角形ABC的直角边AC为直径作⊙O,交斜边AB于点D,过点D作⊙O的切线,交BC边于点E.则BEBC=______.答案:连接CD,∵AC是⊙O的直径,∴CD⊥AB.∵BC经过半径OC的端点C且BC⊥AC,∴BC是⊙O的切线,而DE是⊙O的切线,∴EC=ED.∴∠ECD=∠CDE,∴∠B=∠BDE,∴DE=BE.∴BE=CE=12BC.∴BEBC=12.故为12.20.把函数y=sin(x-)-2的图象经过按平移得到y=sinx的图象,则=(

A.

B.

C.

D.答案:A21.若不等式的解集,则实数=___________.答案:-422.直线l1过点P(0,-1),且倾斜角为α=30°.

(I)求直线l1的参数方程;

(II)若直线l1和直线l2:x+y-2=0交于点Q,求|PQ|.答案:(Ⅰ)直线l1的参数方程为x=cos30°ty=-1+sin30°t即x=32ty=-1+12t(t为参数)

(Ⅱ)将上式代入x+y-2=0,得32t-1+12t-2=0解得t=3(3-1)根据t的几何意义得出|PQ|=|t|=3(3-1)23.如图,已知⊙O的直径AB=5,C为圆周上一点,BC=4,过点C作⊙O的切线l,过点A作l的垂线AD,垂足为D,则CD=______.

答案:如图,连接OC,由题意DC是切线可得出OC⊥DC,再过过A作AE⊥OC于E,故有四边形AECD是矩形,可得AE=CD又⊙O的直径AB=5,C为圆周上一点,BC=4,∴AC=3故S△AOC=12S△ABC=12×12×4×3=3又OC=52,故12×52×AE=3解得AE=125所以CD=125故为:125.24.已知=(1,2),=(-3,2),k+与-3垂直时,k的值为(

A.17

B.18

C.19

D.20答案:C25.(参数方程与极坐标选讲)在极坐标系中,圆C的极坐标方程为:ρ2+2ρcosθ=0,点P的极坐标为(2,π2),过点P作圆C的切线,则两条切线夹角的正切值是______.答案:圆C的极坐标方程ρ2+2ρcosθ=0,化为普通方程为x2+y2+2x=0,即(x-1)2+y2=1.它表示以C(1,0)为圆心,以1为半径的圆.点P的极坐标为(2,π2),化为直角坐标为(0,2).设两条切线夹角为2θ,则sinθ=15,cosθ25,故tanθ=12.再由tan2θ=2tanθ1-tan2θ=43,故为43.26.满足条件|z|=|3+4i|的复数z在复平面上对应点的轨迹是______.答案:|z|=5,即点Z到原点O的距离为5∴z所对应点的轨迹为以(0,0)为圆心,5为半径的圆.27.编号为A、B、C、D、E的五个小球放在如图所示的五个盒子中,要求每个盒子只能放一个小球,且A不能放1,2号,B必需放在与A相邻的盒子中,则不同的放法有()种.A.42B.36C.30D.28答案:根据题意,A不能放1,2号,则A可以放在3、4、5号盒子,分2种情况讨论:①当A在4、5号盒子时,B有1种放法,剩下3个有A33=6种不同放法,此时,共有2×1×6=12种情况;②当A在3号盒子时,B有3种放法,剩下3个有A33=6种不同放法,此时,共有1×3×6=18种情况;由加法原理,计算可得共有12+18=30种不同情况;故选C.28.给出下列四个命题,其中正确的一个是()

A.在线性回归模型中,相关指数R2=0.80,说明预报变量对解释变量的贡献率是80%

B.在独立性检验时,两个变量的2×2列联表中对角线上数据的乘积相差越大,说明这两个变量没有关系成立的可能性就越大

C.相关指数R2用来刻画回归效果,R2越小,则残差平方和越大,模型的拟合效果越好

D.线性相关系数r的绝对值越接近于1,表明两个随机变量线性相关性越强答案:D29.已知A(3,0),B(0,3),O为坐标原点,点C在第一象限内,且∠AOC=60°,设OC=OA+λOB

(λ∈R),则λ等于()A.33B.3C.13D.3答案:∵OC=OC=OA+λOB(λ∈R),∠AOC=60°∴|λOB|=

3tan60°=33又∵|OB|=3∴λ=3故选D.30.若a=(1,1),则|a|=______.答案:由题意知,a=(1,1),则|a|=1+1=2,故为:2.31.如图所示,O点在△ABC内部,D、E分别是AC,BC边的中点,且有OA+2OB+3OC=O,则△AEC的面积与△AOC的面积的比为()

A.2

B.

C.3

D.

答案:B32.已知P为抛物线y2=4x上一个动点,Q为圆x2+(y-4)2=1上一个动点,那么点P到点Q的距离与点P到抛物线的准线距离之和的最小值是()

A.2-1

B.2-2

C.-1

D.-2答案:C33.已知A(1,0,0)、B(0,1,0)、C(0,0,1)三点,n=(1,1,1),则以n为方向向量的直线l与平面ABC的关系是()A.垂直B.不垂直C.平行D.以上都有可能答案:由题意,AB=(-1,1,0),BC=(0,-1,1)∵n•AB=0,n•BC=0∴以n为方向向量的直线l与平面ABC垂直故选A.34.如图程序框图表达式中N=______.答案:该程序按如下步骤运行①N=1×2,此时i变成3,满足i≤5,进入下一步循环;②N=1×2×3,此时i变成4,满足i≤5,进入下一步循

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论