2023年海南工商职业学院高职单招(数学)试题库含答案解析_第1页
2023年海南工商职业学院高职单招(数学)试题库含答案解析_第2页
2023年海南工商职业学院高职单招(数学)试题库含答案解析_第3页
2023年海南工商职业学院高职单招(数学)试题库含答案解析_第4页
2023年海南工商职业学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年海南工商职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.把10个相同的小正方体,按如图所示的位置堆放,它的外表含有若干小正方形。如果将图中标有A的一个小正方体搬去,这时外表含有的小正方形个数与搬去前相比(

)答案:A2.曲线xy=1的参数方程不可能是()

A.

B.

C.

D.答案:B3.已知平行四边形ABCD,下列正确的是()

A.

B.

C.

D.答案:B4.如果方程(1+i)x2-2(a+i)x+5-3i=0(a∈R)有实数解,求a的值.答案:设方程的实根为x0,则方程(1+i)x2-2(a+i)x+5-3i=0可化为(x20-2ax0+5)+(x20-2x0-3)i=0由复数相等的充要条件可得x20-2ax0+5=0①x20-2x0-3=0

②由②得x0=3或-1,代入①得a=73或-3∴a=73或-35.设复数z=lg(m2-2m-2)+(m2+3m+2)i,试求实数m的取值范围,使得:

(1)z是纯虚数;

(2)z是实数;

(3)z对应的点位于复平面的第二象限.答案:(1)若z=lg(m2-2m-2)+(m2+3m+2)i是纯虚数,则可得lg(m2-2m-2)=0m2+3m+2≠0,即m2-2m-2=1m2+3m+2≠0,解之得m=3(舍去-1);…(3分)(2)若z=lg(m2-2m-2)+(m2+3m+2)i是实数,则可得m2+3m+2=0,解之得m=-1或m=-2…(6分)(3)∵z=lg(m2-2m-2)+(m2+3m+2)i对应的点坐标为(lg(m2-2m-2),m2+3m+2)∴若该对应点位于复平面的第二象限,则可得lg(m2-2m-2)<0m2+3m+2>0,即0<m2-2m-2<1m2+3m+2>0,解之得-1<m<1-3或1+3<m<3.…(10分)6.直线L1:x-y=0与直线L2:x+y-10=0的交点坐标是()

A.(5,5)

B.(5,-5)

C.(-1,1)

D.(1,1)答案:A7.要考察某种品牌的850颗种子的发芽率,抽取60粒进行实验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第8行第11列的数1开始向右读,请你依次写出最先检测的4颗种子的编号______,______,______,______.

(下面摘取了随机数表第7行至第9行的一部分)

84

42

17

53

31

57

24

55

06

88

77

04

74

47

67

21

76

33

50

25

63

01

63

78

59

16

95

55

67

19

98

10

50

71

75

12

86

73

58

07

44

39

52

38

79

33

21

12

34

29

78

64

56

07

82

52

42

07

44

38.答案:由于随机数表中第8行的数字为:63

01

63

78

59

16

95

5567

19

98

10

50

71

75

12

86

73

58

07其第11列数字为1,故产生的第一个数字为:169,第二个数字为:555,第三个数字为:671,第四个数字为:998(超出编号范围舍)第五个数字为:105故为:169,555,671,1058.平面向量a与b的夹角为,若a=(2,0),|b|=1,则|a+2b|=()

A.

B.2

C.4

D.12答案:B9.已知圆C的极坐标方程是ρ=2sinθ,那么该圆的直角坐标方程为

______,半径长是

______.答案:把极坐标方程是ρ=2sinθ的两边同时乘以ρ得:ρ2=2ρsinθ,∴x2+y2=2y,即x2+(y-1)2=1,表示以(0,1)为圆心,半径等于1的圆,故为:x2+(y-1)2=1;1.10.一圆形纸片的圆心为O,点Q是圆内异于O点的一个定点,点A是圆周上一动点,把纸片折叠使得点A与点Q重合,然后抹平纸片,折痕CD与OA交于点P,当点A运动时,点P的轨迹为()

A.椭圆

B.双曲线

C.抛物线

D.圆答案:A11.在四棱锥P-ABCD中,底面ABCD是正方形,E为PD中点,若PA=a,PB=b,PC=c,则BE=______.答案:BE=12(BP+BD)=-12PB

+12(BA+BC)=-12PB+12BA+12BC=-12PB+12(PA-PB)+12(PC-PB)=-32PB+12PA+

12PC=12a-32b+12c.故为:12a-32b+12c.12.已知向量,满足:||=3,||=5,且=λ,则实数λ=()

A.

B.

C.±

D.±答案:C13.一条直线上顺次有A、B、C三点,且|AB|=2,|BC|=3,则C分有向线段AB的比为()

A.-

B.-

C.-

D.-答案:A14.下列函数中,与函数y=1x有相同定义域的是()A.f(x)=log2xB.f(x)=1xC.f(x)=|x|D.f(x)=2x答案:∵函数y=1x定义域为x>0,又函数f(x)=log2x定义域x>0,故选A.15.已知函数y=ax2+bx+c,如果a>b>c,且a+b+c=0,则它的图象是(

)

A.

B.

C.

D.

答案:D16.下列图形中不一定是平面图形的是()

A.三角形

B.四边相等的四边形

C.梯形

D.平行四边形答案:B17.向量a、b满足|a|=1,|b|=2,且a与b的夹角为π3,则|a+2b|=______.答案:∵|a|=1,|b|=2,且a与b的夹角为π3,∴a?b=|a|?|b|?cosπ3=1因此,(a+2b)2=|a|2+4a?b+4|b|2=12+4×1+4|b|2=21∴|a+2b|=21故为:2118.5颗骰子同时掷出,共掷100次则至少一次出现全为6点的概率为(

)A.B.C.D.答案:C解析:5颗骰子同时掷出,没有全部出现6点的概率是,共掷100次至少一次出现全为6点的概率是.19.如图,在⊙O中,AB是弦,AC是⊙O的切线,A是切点,过

B作BD⊥AC于D,BD交⊙O于E点,若AE平分∠BAD,则∠BAD=()

A.30°

B.45°

C.50°

D.60°

答案:D20.一直线倾斜角的正切值为34,且过点P(1,2),则直线方程为______.答案:因为直线倾斜角的正切值为34,即k=3,又直线过点P(1,2),所以直线的点斜式方程为y-2=34(x-1),整理得,3x-4y+5=0.故为3x-4y+5=0.21.某班从6名班干部(其中男生4人,女生2人)中选3人参加学校学生会的干部竞选.

(1)设所选3人中女生人数为ξ,求ξ的分布列及数学期望;

(2)在男生甲被选中的情况下,求女生乙也被选中的概率.答案:(1)ξ的所有可能取值为0,1,2.依题意,得P(ξ=0)=C34C36=15,P(ξ=1)=C24C12C36=35,P(ξ=2)=C14C22C36=15.∴ξ的分布列为ξ012P153515∴Eξ=0×15+1×35+2×15=1.(2)设“男生甲被选中的情况下,女生乙也被选中”为事件C,“男生甲被选中”为事件A,“女生乙被选中”为事件B从4个男生、2个女生中选3人,男生甲被选中的种数为n(A)=C52=10,男生甲被选中,女生乙也被选中的种数为n(AB)=C41=4,∴P(C)=n(AB)n(A)=C14C25=410=25故在男生甲被选中的情况下,女生乙也被选中的概率为25.22.如图,圆O上一点C在直径AB上的射影为D.AD=2,AC=25,则AB=______.答案:∵AB是直径,∴△ABC是直角三角形,∵C在直径AB上的射影为D,∴CD⊥AB,∴AC2=AD?AB,∴AB=AC2AD=202=10,故为:1023.若函数f(2x+1)=x2-2x,则f(3)=______.答案:解法一:(换元法求解析式)令t=2x+1,则x=t-12则f(t)=(t-12)2-2t-12=14t2-32t+54∴f(x)=14x2-32x+54∴f(3)=-1解法二:(凑配法求解析式)∵f(2x+1)=x2-2x=14(2x+1)2-32(2x+1)+54∴f(x)=14x2-32x+54∴f(3)=-1解法三:(凑配法求解析式)∵f(2x+1)=x2-2x令2x+1=3则x=1此时x2-2x=-1∴f(3)=-1故为:-124.已知点G是△ABC的重心,O是空间任一点,若OA+OB+OC=λOG,则实数λ=______.答案:由于G是三角形ABC的重心,则有GA+GB+GC=0,OA-OG+OB-OG+OC-OG=0故OA+OB+OC=3OG又由已知OA+OB+OC=λOG故可得λ=3故为:325.一个简单多面体的面都是三角形,顶点数V=6,则它的面数为______个.答案:∵已知多面体的每个面有三条边,每相邻两条边重合为一条棱,∴棱数E=32F,代入公式V+F-E=2,得F=2V-4.∵V=6,∴F=8,E=12,即多面体的面数F为8,棱数E为12.故为8.26.不等式﹣2x+1>0的解集是(

).答案:{x|x<}27.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X、Y,则log2XY=1的概率为()A.16B.536C.112D.12答案:∵log2XY=1∴Y=2X,满足条件的X、Y有3对而骰子朝上的点数X、Y共有36对∴概率为336=112故选C.28.一个长方体的长、宽、高之比为2:1:3,全面积为88cm2,则它的体积为

______cm3.答案:由长方体的长、宽、高之比为2:1:3,不妨设长、宽、高分别为2x,x,3x;则长方体的全面积为:2(2x?x+2x?3x+x?3x)=2×11x2=88,∴x=±2,这里取x=2;所以,长方体的体积为:V=2x?x?3x=4×2×6=48.故为:4829.已知函数y=与y=ax2+bx,则下列图象正确的是(

)

A.

B.

C.

D.

答案:C30.直线m的倾斜角为30°,则此直线的斜率等于()A.12B.1C.33D.3答案:因为直线的斜率k和倾斜角θ的关系是:k=tanθ∴倾斜角为30°时,对应的斜率k=tan30°=33故选:C.31.点P(x,y)是椭圆2x2+3y2=12上的一个动点,则x+2y的最大值为______.答案:把椭圆2x2+3y2=12化为标准方程,得x26+y24=1,∴这个椭圆的参数方程为:x=6cosθy=2sinθ,(θ为参数)∴x+2y=6cosθ+4sinθ,∴(x+2y)max=6+16=22.故为:22.32.已知a>0,且a≠1,解关于x的不等式:

答案:①当a>1时,原不等式解为{x|0<x≤loga2②当0<a<1时,原不等式解为{x|loga2≤x<0解析:原不等式等价于原不等式同解于7分由①②得1<ax<4,由③得从而1<ax≤210分①当a>1时,原不等式解为{x|0<x≤loga2②当0<a<1时,原不等式解为{x|loga2≤x<033.如图所示的程序框图,运行相应的程序,若输出S的值为254,则判断框①中应填入的条件是()A.n≤5B.n≤6C.n≤7D.n≤8答案:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是输出满足条件S=2+22+23+…+2n=126时S的值∵2+22+23+…+27=254,故最后一次进行循环时n的值为7,故判断框中的条件应为n≤7.故选C.34.已知

|x|<a,|y|<a.求证:|xy|<a.答案:证明:∵0<|x|<a,0<|y|<a∴由不等式的性质,可得|xy|<a35.已知△ABC三个顶点的坐标为A(1,3)、B(-1,-1)、C(-3,5),求这个三角形外接圆的方程.答案:设圆的方程为(x-a)2+(y-b)2=r2,则(1-a)2+(3-b)2=r2(-1-a)2+(-1-b)2=r2(-3-a)2+(5-b)2=r2,整理得a+2b-2=02a-b+6=0,解之得a=-2,b=2,可得r2=10,因此,这个三角形外接圆的方程为(x+2)2+(y-2)2=10.36.过点P(3,0)作一直线,它夹在两条直线l1:2x-y-3=0,l2:x+y+3=0之间的线段恰被点P平分,该直线的方程是()

A.4x-y-6=0

B.3x+2y-7=0

C.5x-y-15=0

D.5x+y-15=0答案:C37.如图,l1、l2、l3是同一平面内的三条平行直线,l1与l2间的距离是1,l2与l3间的距离是2,正三角形ABC的三顶点分别在l1、l2、l3上,则△ABC的边长是()

A.2

B.

C.

D.

答案:D38.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()

A.若k2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病

B.从独立性检验可知,有99%的把握认为吸烟与患肺病有关时,我们说某人吸烟,那么他有99%的可能患有肺病

C.若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误

D.以上三种说法都不正确答案:D39.某品牌平板电脑的采购商指导价为每台2000元,若一次采购数量达到一定量,还可享受折扣.如图为某位采购商根据折扣情况设计的算法程序框图,若一次采购85台该平板电脑,则S=______元.答案:分析程序中各变量、各语句,其作用是:表示一次采购共需花费的金额,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数S=200×0.8?x,x>100200×0.9?x,50<x≤100200?x,0<x≤50的值,∵x=85,∴S=200×0.9×85=15300(元),故为:15300.40.若直线ax+by+1=0与圆x2+y2=1相离,则点P(a,b)的位置是()

A.在圆上

B.在圆外

C.在圆内

D.以上都有可能答案:C41.如图,△ABC中,D,E,F分别是边BC,AB,CA的中点,在以A、B、C、D、E、F为端点的有向线段中所表示的向量中,

(1)与向量FE共线的有

______.

(2)与向量DF的模相等的有

______.

(3)与向量ED相等的有

______.答案:(1)∵EF是△ABC的中位线,∴EF∥BC且EF=12BC,则与向量FE共线的向量是BC、BD、DC、CB、DB、CD;(2))∵DF是△ABC的中位线,∴DF∥AC且DF=12AC,则与向量DF的模相等的有CE,EA,EC,AF;(3)∵DE是△ABC的中位线,∴DE∥AB且DE=12AB,则与向量ED相等的有AF,FB.42.(选做题)已知矩阵.122x.的一个特征值为3,求另一个特征值及其对应的一个特征向量.答案:矩阵M的特征多项式为.λ-1-2-2λ-x.=(λ-1)(λ-x)-4…(1分)因为λ1=3方程f(λ)=0的一根,所以x=1…(3分)由(λ-1)(λ-1)-4=0得λ2=-1,…(5分)设λ2=-1对应的一个特征向量为α=xy,则-2x-2y=0-2x-2y=0得x=-y…(8分)令x=1则y=-1,所以矩阵M的另一个特征值为-1,对应的一个特征向量为α=1-1…(10分)43.如图,半径为R的球O中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是______.

答案:设圆柱的上底面半径为r,球的半径与上底面夹角为α,则r=Rcosα,圆柱的高为2Rsinα,圆柱的侧面积为:2πR2sin2α,当且仅当α=π4时,sin2α=1,圆柱的侧面积最大,圆柱的侧面积为:2πR2,球的表面积为:4πR2,球的表面积与该圆柱的侧面积之差是:2πR2.故为:2πR244.已知x,y,z满足(x-3)2+(y-4)2+z2=2,那么x2+y2+z2的最小值是______.答案:由题意可得P(x,y,z),在以M(3,4,0)为球心,2为半径的球面上,x2+y2+z2表示原点与点P的距离的平方,显然当O,P,M共线且P在O,M之间时,|OP|最小,此时|OP|=|OM|-2=32+42-2=52,所以|OP|2=27-102.故为:27-102.45.抛物线C:y=x2上两点M、N满足MN=12MP,若OP=(0,-2),则|MN|=______.答案:设M(x1,x12),N(x2,x22),则MN=(x2-x1,x22-x12)MP=(-x1,-2-x12).因为MN=12MP,所以(x2-x1,x22-x12)=12(-x1,-2-x12),即x2-x1=-12x1,x22-x12=12(-2-x12),所以x1=2x2,2x22=-2+x12,联立解得:x2=1,x1=2或x2=-1,x1=-2即M(1,1),N(2,4)或M(-1,1),N(-2,4)所以|MN|=10故为10.46.若直线l经过原点和点A(-2,-2),则它的斜率为()

A.-1

B.1

C.1或-1

D.0答案:B47.(不等式选讲选做题)

已知实数a、b、x、y满足a2+b2=1,x2+y2=3,则ax+by的最大值为______.答案:因为a2+b2=1,x2+y2=3,由柯西不等式(a2+b2)(x2+y2)≥(ax+by)2,得3≥(ax+by)2,不且仅当ay=bx时取等号,所以ax+by的最大值为3.故为:3.48.已知中心在原点,对称轴为坐标轴,长半轴长与短半轴长的和为92,离心率为35的椭圆的标准方程为______.答案:由题意可得a+b=92e=ca=35a2=b2+c2,解得a2=50b2=32.∴椭圆的标准方程为x250+y232=1或y250+x232=1.故为x250+y232=1或y250+x232=1.49.给出以下变量①吸烟,②性别,③宗教信仰,④国籍,其中属于分类变量的有______.答案:①因为吸烟不是分类变量,是否吸烟才是分类变量,其他②③④属于分类变量.故为:②③④.50.设0<a<1,m=loga(a2+1),n=loga(a+1),p=loga(2a),则m,n,p的大小关系是()A.n>m>pB.m>p>nC.m>n>pD.p>m>n答案:取a=0.5,则a2+1、a+1、2a的大小分别为:1.25,1.5,1,又因为0<a<1时,y=logax为减函数,所以p>m>n故选D第2卷一.综合题(共50题)1.已知随机变量X满足D(X)=2,则D(3X+2)=()

A.2

B.8

C.18

D.20答案:C2.在(1+x)3+(1+x)4…+(1+x)7的展开式中,含x项的系数是______.(用数字作答)答案:(1+x)3+(1+x)4…+(1+x)7的展开式中,含x项的系数是C31+C41+C51+…+C71=25故为:253.点O是△ABC内一点,若+=-,则是S△AOB:S△AOC=()

A.1

B.

C.

D.答案:A4.将5位志愿者分成4组,其中一组为2人,其余各组各1人,到4个路口协助交警执勤,则不同的分配方案有______种(用数字作答).答案:由题意,先分组,再到4个路口协助交警执勤,则不同的分配方案有C25A44=240种故为:240.5.从装有2个红球和2个白球的口袋内,任取2个球,那么下面互斥而不对立的两个事件是()

A.恰有1个白球;恰有2个白球

B.至少有1个白球;都是白球

C.至少有1个白球;

至少有1个红球

D.至少有1个白球;

都是红球答案:A6.如图,已知OA、OB是⊙O的半径,且OA⊥OB,P是线段OA上一点,直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点E,求证:∠OBP+∠AQE=45°.答案:证明:连接AB,则∠AQE=∠ABP,而OA=OB,所以∠ABO=45°所以∠OBP+∠AQE=∠OBP+∠ABP=∠ABO=45°7.72的正约数(包括1和72)共有______个.答案:72=23×32.∴2m?3n(0≤m≤3,0≤n≤2,m,n∈N)都是72的正约数.m的取法有4种,n的取法有3种,由分步计数原理共3×4个.故为:12.8.如果方程(1+i)x2-2(a+i)x+5-3i=0(a∈R)有实数解,求a的值.答案:设方程的实根为x0,则方程(1+i)x2-2(a+i)x+5-3i=0可化为(x20-2ax0+5)+(x20-2x0-3)i=0由复数相等的充要条件可得x20-2ax0+5=0①x20-2x0-3=0

②由②得x0=3或-1,代入①得a=73或-3∴a=73或-39.已知M(-2,0),N(2,0),|PM|-|PN|=3,则动点P的轨迹是()A.双曲线B.双曲线右支C.一条射线D.不存在答案:∵|PM|-|PN|=3,M(-2,0),N(2,0),且3<4=|MN|,根据双曲线的定义,∴点P是以M(-2,0),N(2,0)为两焦点的双曲线的右支.故选B.10.抛物线y=-12x2上一点N到其焦点F的距离是3,则点N到直线y=1的距离等于______.答案:∵抛物线y=-12x2化成标准方程为x2=-2y∴抛物线的焦点为F(0,-12),准线方程为y=12∵点N在抛物线上,到焦点F的距离是3,∴点N到准线y=12的距离也是3因此,点N到直线y=1的距离等于3+(1-12)=72故为:7211.如图,花园中间是喷水池,喷水池周围的A、B、C、D区域种植草皮,要求相邻的区域种不同颜色的草皮,现有4种不同颜色的草皮可供选用,则共有______种不同的种植方法(以数字作答).答案:若AD相同,有4×(3+3×2)种种植方法,若AD不同,有4×3×(2+2×1)种种植方法∴共有4×(3+3×2)+4×3×(2+2×1)=36+48=84种不同方法.故为84.12.定义xn+1yn+1=1011xnyn,n∈N*为向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一个矩阵变换,其中O是坐标原点.已知OP1=(1,0),则OP2010的坐标为______.答案:由题意,xn+1=xnyn+1=xn+yn∴向量的横坐标不变,纵坐标构成以0为首项,1为公差的等差数列∴OP2010的坐标为(1,2009)故为(1,2009)13.下列语句不属于基本算法语句的是()

A.赋值语句

B.运算语句

C.条件语句

D.循环语句答案:B14.

已知向量

=(4,3),=(1,2),若向量

+k

-

垂直,则k的值为(

)A.

233B.7C.-

115D.-

233答案:考点:数量积判断两个平面向量的垂直关系.15.已知向量a=(2,0),b=(1,x),且a、b的夹角为π3,则x=______.答案:由两个向量的数量积的定义、数量积公式可得a?b=2+0=21+x2cosπ3=21+x2=12,x2=3,∴x=±3,故为±3.16.平面ABCD中,点A坐标为(0,1,1),点B坐标为(1,2,1),点C坐标为(-1,0,-1).若向量a=(-2,y,z),且a为平面ABC的法向量,则yz=()A.2B.0C.1D.-1答案:AB=(1,1,0),AC=(-1,-1,-2),与平面ABC垂直的向量应与上面的向量的数量积为零,向量a=(-2,y,z),且a为平面ABC的法向量,则a⊥AB且a⊥AC,即a•AB=0,且a•AC=0,即-2+y+0=0且2-y-2z=0,即y=2z=0,∴则yz=20=1,故选C.17.正方体ABCD-A1B1C1D1的棱长为2,MN是它的内切球的一条弦(把球面上任意两点之间的线段称为球的弦),P为正方体表面上的动点,当弦MN最长时.PM•PN的最大值为______.答案:设点O是此正方体的内切球的球心,半径R=1.∵PM•PN≤|PM|

|PN|,∴当点P,M,N三点共线时,PM•PN取得最大值.此时PM•PN≤(PO-MO)•(PO+ON),而MO=ON,∴PM•PN≤PO2-R2=PO2-1,当且仅当点P为正方体的一个顶点时上式取得最大值,∴(PM•PN)max=(232)2-1=2.故为2.18.正多面体只有______种,分别为______.答案:正多面体只有5种,分别为正四面体、正六面体、正八面体、正十二面体、正二十面体.故为:5,正四面体、正六面体、正八面体、正十二面体、正二十面体.19.设非零向量、、满足||=||=||,+=,则<,>=()

A.150°

B.120°

C.60°

D.30°答案:B20.给出下列四个命题,其中正确的一个是()

A.在线性回归模型中,相关指数R2=0.80,说明预报变量对解释变量的贡献率是80%

B.在独立性检验时,两个变量的2×2列联表中对角线上数据的乘积相差越大,说明这两个变量没有关系成立的可能性就越大

C.相关指数R2用来刻画回归效果,R2越小,则残差平方和越大,模型的拟合效果越差

D.随机误差e是衡量预报精确度的一个量,它满足E(e)=0答案:D21.已知不等式(a2+a+2)2x>(a2+a+2)x+8,其中x∈N+,使此不等式成立的x的最小整数值是______.答案:∵a2+a+2=(a+12)2+74>1,且x∈N+,∴由正整数指数函数在底数大于1时单调递增的性质,得2x>x+8,即x>8,∴使此不等式成立的x的最小整数值为9.故为:9.22.运行如图的程序,将自然数列0,1,2,…依次输入作为a的值,则输出结果x为______.

答案:当n=2时,x=5×6+0=30,当n=1时,x=30×6+1=181,当n=0时,x=181×6+2=1088,故为:108823.一位母亲记录了她的儿子3~9岁的身高数据,并由此建立身高与年龄的回归模型为y=7.19x+73.93,用这个模型预测她的儿子10岁时的身高,则正确的叙述是()A.身高一定是145.83

cmB.身高在145.83

cm以上C.身高在145.83

cm左右D.身高在145.83

cm以下答案:∵身高与年龄的回归模型为y=7.19x+73.93.∴可以预报孩子10岁时的身高是y=7.19x+73.93.=7.19×10+73.93=145.83则她儿子10岁时的身高在145.83cm左右.故选C.24.已知圆的方程是(x-2)2+(y-3)2=4,则点P(3,2)满足()

A.是圆心

B.在圆上

C.在圆内

D.在圆外答案:C25.曲线(θ为参数)上的点到原点的最大距离为()

A.1

B.

C.2

D.答案:C26.已知全集U=R,A⊆U,B⊆U,如果命题P:2∈A∪B,则命题非P是()A.2∉AB.2∈(CUA)C.2∈(CUA)∩(CUB)D.2∈(CUA)∪(CUB)答案:命题P:2∈A∪B,∴┐p为2∈(CUA)∩(CUB)故选C27.3科老师都布置了作业,在同一时刻4名学生都做作业的可能情况有()

A.43种

B.4×3×2种

C.34种

D.1×2×3种答案:C28.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4只,那么310为()A.恰有1只坏的概率B.恰有2只好的概率C.4只全是好的概率D.至多2只坏的概率答案:∵盒中有10只螺丝钉∴盒中随机地抽取4只的总数为:C104=210,∵其中有3只是坏的,∴所可能出现的事件有:恰有1只坏的,恰有2只坏的,恰有3只坏的,4只全是好的,至多2只坏的取法数分别为:C31×C73=105,C32C72=63,C74=35,C74+C31×C73+C32×C72=203∴恰有1只坏的概率分别为:105210=12,,恰有2只好的概率为63210=310,,4只全是好的概率为35210=16,至多2只坏的概率为203210=2930;故A,C,D不正确,B正确故选B29.某学校为了调查高三年级的200名文科学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取20名同学进行调查;第二种由教务处对该年级的文科学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查,则这两种抽样的方法依次为()A.分层抽样,简单随机抽样B.简单随机抽样,分层抽样C.分层抽样,系统抽样D.简单随机抽样,系统抽样答案:第一种由学生会的同学随机抽取20名同学进行调查;这是一种简单随机抽样,第二种由教务处对该年级的文科学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查,对于个体比较多的总体,采用系统抽样,故选D.30.下列在曲线上的点是()

A.

B.

C.

D.答案:D31.(1+x2)5的展开式中x2的系数()A.10B.5C.52D.1答案:含x2项为C25(x2)2=10×x24=52x2,故选项为为C.32.设a,b是不共线的两个向量,已知=2+m,=+,=-2.若A,B,D三点共线,则m的值为()

A.1

B.2

C.-2

D.-1答案:D33.已知指数函数f(x)的图象过点(3,8),求f(6)的值.答案:设指数函数为:f(x)=ax,因为指数函数f(x)的图象过点(3,8),所以8=a3,∴a=2,所求指数函数为f(x)=2x;所以f(6)=26=64所以f(6)的值为64.34.在某电视歌曲大奖赛中,最有六位选手争夺一个特别奖,观众A,B,C,D猜测如下:A说:获奖的不是1号就是2号;A说:获奖的不可能是3号;C说:4号、5号、6号都不可能获奖;D说:获奖的是4号、5号、6号中的一个.比赛结果表明,四个人中恰好有一个人猜对,则猜对者一定是观众

获特别奖的是

号选手.答案:C,3.解析:推理如下:因为只有一人猜对,而C与D互相否定,故C、D中一人猜对。假设D对,则推出B也对,与题设矛盾,故D猜错,所以猜对者一定是C;于是B一定猜错,故获奖者是3号选手(此时A错).35.已知两个力F1,F2的夹角为90°,它们的合力大小为10N,合力与F1的夹角为60°,那么F2的大小为()A.53NB.5NC.10ND.52N答案:由题意可知:对应向量如图由于α=60°,∴F2的大小为|F合|?sin60°=10×32=53.故选A.36.求证:三个两两垂直的平面的交线两两垂直.答案:设三个互相垂直的平面分别为α、β、γ,且α∩β=a,β∩γ=b,γ∩α=c,三个平面的公共点为O,如图所示:在平面γ内,除点O外,任意取一点M,且点M不在这三个平面中的任何一个平面内,过点M作MN⊥c,MP⊥b,M、P为垂足,则有平面和平面垂直的性质可得MN⊥α,MP⊥β,∴a⊥MN,a⊥MP,∴a⊥平面γ.

再由b、c在平面γ内,可得a⊥b,a⊥c.同理可证,c⊥b,c⊥a,从而证得a、b、c互相垂直.37.用冒泡法对43,34,22,23,54从小到大排序,需要(

)趟排序。

A.2

B.3

C.4

D.5答案:A38.现有10个保送上大学的名额,分配给7所学校,每校至少有1个名额,名额分配的方法共有______种(用数字作答).答案:根据题意,将10个名额,分配给7所学校,每校至少有1个名额,可以转化为10个元素之间有9个间隔,要求分成7份,每份不空;相当于用6块档板插在9个间隔中,共有C96=84种不同方法.所以名额分配的方法共有84种.39.设函数f(x)的定义域为R,如果对任意的实数x,y都有f(x+y)=f(x)+f(y)成立,且f(2)=1,那么f(3)=______.答案:对任意的实数x,y都有f(x+y)=f(x)+f(y)成立,且f(2)=1,∴f(2)=2f(1)=1∴f(1)=12那么f(3)=f(2)+f(1)=1=12=32故为:3240.若纯虚数z满足(2-i)z=4-bi,(i是虚数单位,b是实数),则b=()

A.-2

B.2

C.-8

D.8答案:C41.用反证法证明“a+b=1”时的反设为()

A.a+b>1且a+b<1

B.a+b>1

C.a+b>1或a+b<1

D.a+b<1答案:C42.直线ax+by=1与圆x2+y2=1有两不同交点,则点P(a,b)与圆的位置关系为______.答案:圆心到直线ax+by=1的距离,1a2+b2,∵直线ax+by=1与圆x2+y2=1有两不同交点,∴1a2+b2<1即a2+b2>1.故为:点在圆外.43.椭圆的中心在坐标原点,焦点在坐标轴上,两顶点分别是(3,0),(0,2),则此椭圆的方程是______.答案:依题意,此椭圆方程为标准方程,且焦点在x轴上,设为x2a2+y2b2=1∵椭圆的两顶点分别是(3,0),(0,2),∴a=3,b=2∵∴此椭圆的标准方程为:x29+y22=1.故为:x29+y22=1.44.已知集合M={1,2,3},N={1,2,3,4},定义函数f:M→N.若点A(1,f(1))、B(2,f(2))、C(3,f(3)),△ABC的外接圆圆心为D,且

则满足条件的函数f(x)有()

A.6个

B.10个

C.12个

D.16个答案:C45.如图所示,正四面体V—ABC的高VD的中点为O,VC的中点为M.

(1)求证:AO、BO、CO两两垂直;

(2)求〈,〉.答案:(1)证明略(2)45°解析:(1)

设=a,=b,=c,正四面体的棱长为1,则=(a+b+c),=(b+c-5a),=(a+c-5b),=(a+b-5c)∴·=(b+c-5a)·(a+c-5b)=(18a·b-9|a|2)=(18×1×1·cos60°-9)=0.∴⊥,∴AO⊥BO,同理⊥,BO⊥CO,∴AO、BO、CO两两垂直.(2)

=+=-(a+b+c)+=(-2a-2b+c).∴||==,||==,·=(-2a-2b+c)·(b+c-5a)=,∴cos〈,〉==,∵〈,〉∈(0,),∴〈,〉=45°.46.已知双曲线x2-y22=1,经过点M(1,1)能否作一条直线l,使直线l与双曲线交于A、B,且M是线段AB的中点,若存在这样的直线l,求出它的方程;若不存在,说明理由.答案:设过点M(1,1)的直线方程为y=k(x-1)+1或x=1(1)当k存在时有y=k(x-1)+1x2

-y22=1得(2-k2)x2+(2k2-2k)x-k2+2k-3=0

(1)当直线与双曲线相交于两个不同点,则必有△=(2k2-2k)2-4(2-k2)(-k2+2k-3)>0,k<32

又方程(1)的两个不同的根是两交点A、B的横坐标∴x1+x2=2(k-k2)2-k2

又M(1,1)为线段AB的中点∴x1+x22=1

即k-k22-k2=1

k=2

∴k=2,使2-k2≠0但使△<0因此当k=2时,方程(1)无实数解故过点m(1,1)与双曲线交于两点A、B且M为线段AB中点的直线不存在.(2)当x=1时,直线经过点M但不满足条件,综上,符合条件的直线l不存在47.两条直线l1:x-3y+2=0与l2:x-y+2=0的夹角的大小是______.答案:由于两条直线l1:x-3y+2=0与l2:x-y+2=0的斜率分别为33、1,设两条直线的夹角为θ,则tanθ=|k2-k11+k2•k1|=|1-331+1×33|=3-33+3=2-3,∴tan2θ=2tanθ1-tan2θ=33,∴2θ=π6,θ=π12,故为π12.48.若与垂直,则k的值是()

A.2

B.1

C.0

D.答案:D49.某公司的管理机构设置是:设总经理一个,副总经理两个,直接对总经理负责,下设有6个部门,其中副总经理A管理生产部、安全部和质量部,副总经理B管理销售部、财务部和保卫部.请根据以上信息补充该公司的人事结构图,其中①、②处应分别填()

A.保卫部,安全部

B.安全部,保卫部

C.质检中心,保卫部

D.安全部,质检中心

答案:B50.刻画数据的离散程度的度量,下列说法正确的是()

(1)应充分利用所得的数据,以便提供更确切的信息;

(2)可以用多个数值来刻画数据的离散程度;

(3)对于不同的数据集,其离散程度大时,该数值应越小.

A.(1)和(3)

B.(2)和(3)

C.(1)和(2)

D.都正确答案:C第3卷一.综合题(共50题)1.已知向量a,b满足|a|=2,|b|=3,|2a+b|=则a与b的夹角为()

A.30°

B.45°

C.60°

D.90°答案:C2.有外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中7个球标有字母A、3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一号盒子中任取一球,若取得标有字母A的球,则在第二号盒子中任取一个球;若第一次取得标有字母B的球,则在第三号盒子中任取一个球.如果第二次取出的是红球,则称试验成功,那么试验成功的概率为()

A.0.59

B.0.54

C.0.8

D.0.15答案:A3.不等式的解集是

)A.B.C.D.答案:B解析:当时,不等式成立;当时,不等式可化为,解得综上,原不等式解集为故选B4.(几何证明选讲选做题)如图,△ABC的外角平分线AD交外接圆于D,BD=4,则CD=______.答案:∵A、B、C、D共圆,∴∠DAE=∠BCD.又∵CD=CD,∴∠DAC=∠DBC.而∠DAE=∠DAC,∴∠DBC=∠DCB.∴CD=BD=4.故为4.5.如图,圆与圆内切于点,其半径分别为与,圆的弦交圆于点(不在上),求证:为定值。

答案:见解析解析:考察圆的切线的性质、三角形相似的判定及其性质,容易题。证明:由弦切角定理可得6.若90°<θ<180°,曲线x2+y2sinθ=1表示()

A.焦点在x轴上的双曲线

B.焦点在y轴上的双曲线

C.焦点在x轴上的椭圆

D.焦点在y轴上的椭圆答案:D7.若直线x-y-1=0与直线x-ay=0的夹角为,则实数a等于()

A.

B.0

C.

D.0或答案:D8.已知O、A、M、B为平面上四点,且,则()

A.点M在线段AB上

B.点B在线段AM上

C.点A在线段BM上

D.O、A、M、B四点一定共线答案:B9.点(2,-2)的极坐标为______.答案:∵点(2,-2)中x=2,y=-2,∴ρ=x2+y2=4+4=22,tanθ=yx=-1,∴取θ=-π4.∴点(2,-2)的极坐标为(22,-π4)故为(22,-π4).10.在极坐标系下,圆C:ρ2+4ρsinθ+3=0的圆心坐标为()

A.(2,0)

B.

C.(2,π)

D.答案:D11.若向量a=(2,-3,3)是直线l的方向向量,向量b=(1,0,0)是平面α的法向量,则直线l与平面α所成角的大小为______.答案:设直线l与平面α所成角为θ,则sinθ=|cos<a,b>|=|a•b||a|

|b|=222+(-3)2+(3)2×1=12,∵θ∈[0,π2],∴θ=π6,即直线l与平面α所成角的大小为π6.故为π6.12.a=0是复数a+bi(a,b∈R)为纯虚数的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件答案:当a=0时,复数a+bi=bi,当b=0是不是纯虚数即“a=0”成立推不出“复数a+bi(a,b∈R)为纯虚数”反之,当复数a+bi(a,b∈R)为纯虚数,则有a=0且b≠0即“复数a+bi(a,b∈R)为纯虚数”成立能推出“a=0“成立故a=0是复数a+bi(a,b∈R)为纯虚数的必要不充分条件故选B13.已知焦点在x轴上的双曲线渐近线方程是y=±4x,则该双曲线的离心率是()

A.

B.

C.

D.答案:A14.下列选项中元素的全体可以组成集合的是()A.2013年1月风度中学高一级高个子学生B.校园中长的高大的树木C.2013年1月风度中学高一级在校学生D.学校篮球水平较高的学生答案:因为集合中元素具有:确定性、互异性、无序性.所以A、B、D都不是集合,元素不确定;故选C.15.已知直线经过点A(0,4)和点B(1,2),则直线AB的斜率为______.答案:因为A(0,4)和点B(1,2),所以直线AB的斜率k=2-41-0=-2故为:-216.已知a,b,c是正实数,且a+b+c=1,则的最小值为(

)A.3B.6C.9D.12答案:C解析:本题考查均值不等式等知识。将1代入中,得,当且仅当,又,故时不等式取,选C。17.已知=(3,4),=(5,12),与则夹角的余弦为()

A.

B.

C.

D.答案:A18.从2008名学生中选取50名学生参加数学竞赛,若采用下面的方法选取:先用简单随机抽样从2008人中剔除8人,剩下的2000人再按系统抽样的方法抽取50人,则在2008人中,每人入选的概率()

A.不全相等

B.均不相等

C.都相等,且为

D.都相等,且为答案:C19.已知f(x)在(0,2)上是增函数,f(x+2)是偶函数,那么正确的是()A.f(1)<f(52)<f(72)B.f(72)<f(1)<f(52)C.f(72)<f(52)<f(1)D.f(52)<f(1)<f(72)答案:根据函数的图象的平移可得把f(x+2)向右平移2个单位可得f(x)的图象f(x+2)是偶函数,其图象关于y轴对称可知f(x)的图象关于x=2对称∴f(72)=f(12),f(52)=f(32)∵f(x)在(0,2)单调递增,且12<1<32∴f(12)<f(1)<f(32)即f(72)<f(1)<f(52)故选:B20.若关于的不等式的解集是,则的值为_______答案:-2解析:原不等式,结合题意画出图可知.21.(不等式选讲)

已知a>0,b>0,c>0,abc=1,试证明:.答案:略解析::证明:由,所以同理:

相加得:左³……………(10分)22.设F1,F2是双曲线x29-y216=1的两个焦点,点P在双曲线上,且∠F1PF2=90°,求△F1PF2的面积.答案:双曲线x29-y216=1的a=3,c=5,不妨设PF1>PF2,则PF1-PF2=2a=6F1F22=PF12+PF22,而F1F2=2c=10得PF12+PF22=(PF1-PF2)2+2PF1•PF2=100∴PF1•PF2=32∴S=12PF1•PF2=16△F1PF2的面积16.23.用反证法证明命题“三角形的内角至多有一个钝角”时,假设正确的是()

A.假设至少有一个钝角

B.假设没有一个钝角

C.假设至少有两个钝角

D.假设没有一个钝角或至少有两个钝角答案:C24.表示随机事件发生的可能性大小的数叫做该事件的______.答案:根据概率的定义:表示随机事件发生的可能性大小的数叫做该事件的概率;一个随机事件发生的可能性很大,那么P的值接近1又不等于1,故为:概率.25.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()

A.10种

B.20种

C.25种

D.32种答案:D26.画出《数学3》第一章“算法初步”的知识结构图.答案:《数学3》第一章“算法初步”的知识包括:算法、程序框图、算法的三种基本逻辑结构和框图表示、基本算法语句.算法的三种基本逻辑结构和框图表示就是顺序结构、条件结构、循环结构,基本算法语句是指输入语句、输出语句、赋值语句、条件语句和循环语句.故《数学3》第一章“算法初步”的知识结构图示意图如下:27.把点按向量平移到点,则的图象按向量平移后的图象的函数表达式为(

).A.B.C.D.答案:D解析:,由可得,所以平移后的函数解析式为28.设点P对应的复数为-3+3i,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P的极坐标为()

A.(3,π)

B.(-3,π)

C.(3,π)

D.(-3,π)答案:A29.若函数,则下列结论正确的是(

)A.,在上是增函数B.,在上是减函数C.,是偶函数D.,是奇函数答案:C解析:对于时有是一个偶函数30.已知一个几何体是由上下两部分构成的一个组合体,其三视图如图所示,则这个组合体的上下两部分分别是(

)答案:A31.已知单位正方体ABCD-A1B1C1D1,E分别是棱C1D1的中点,试求:

(1)AE与平面BB1C1C所成的角的正弦值;

(2)二面角C1-DB-A的余弦值.答案:以D为坐标原点建立空间直角坐标系,如图所示:(1)设正方体棱长为2.则E(0,1,2),A(2,0,0).AE=(-2,1,2),平面BCC1B1的法向量为n=(0,1,0).设AE与平面BCC1B1所成的角为θ.sinθ=|cos<AE,n>|=|AE•n||AE|

|n|=19=13.∴sinθ=13.(2)A(1,0,0),B(1,1,0),C1(0,1,1),∴DA=(1,0,0),DB=(1,1,0),DC1=(0,1,1).设平面DBC1的法向量为n1=(x,y,z),则n1•DB=x+y=0n1•DC1=y+z=0,令y=-1,则x=1,z=1.∴n1=(1,-1,1).取平面ADB的法向量为n2=(0,0,1).设二面角C1-DB-A的大小为α,从图中可知:α为钝角.∵cos<n1,n2>=n1•n2|n1|

|n2|=13=33,∴cosα=-33.32.已知点P是长方体ABCD-A1B1C1D1底面ABCD内一动点,其中AA1=AB=1,AD=2,若A1P与A1C所成的角为30°,那么点P在底面的轨迹为()A.圆弧B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分答案:如图,∵A1P与A1C所成的角为30°,∴P点在以A1C为轴,母线与轴的夹角为30度的圆锥面上,在直角三角形A1CC1中,A1C1=3,CC1=1,∴∠C1AC1=30°当截面ABCD与圆锥的母线A1C1平行时,截得的图形是抛物线,故点P在底面的轨迹为抛物线的一部分.故选D.33.已知F1=i+2j+3k,F2=2i+3j-k,F3=3i-4j+5k,若F1,F2,F3共同作用于一物体上,使物体从点M(1,-2,1)移动到N(3,1,2),则合力所作的功是______.答案:由题意可得F1=(1,2,3)F2=(2,3,-1),F3=(3,-4,5),故合力F=F1+F2+F3=(6,1,7),位移S=MN=(3,1,2)-(1,-2,1)=(2,3,1),故合力所作的功W=F•S=6×2+1×3+7×1=22故为:2234.已知空间四边形ABCD的对角线为AC、BD,设G是CD的中点,则+(+)等于()

A.

B.

C.

D.

答案:C35.已知两点分别为A(4,3)和B(7,-1),则这两点之间的距离为()A.1B.2C.3D.5答案:∵A(4,3)和B(7,-1),∴AB=(4-7)2+(3+1)2=5故选D.36.若随机向一个半径为1的圆内丢一粒豆子(假设该豆子一定落在圆内),则豆子落在此圆内接正三角形内的概率是______.答案:∵圆O是半径为R=1,圆O的面积为πR2=π则圆内接正三角形的边长为3,而正三角形ABC的面积为343,∴豆子落在正三角形ABC内的概率P=334π=334π故为:334π37.若a2+b2+c2=1,则a+2b+3c的最大值为______.答案:因为已知a、b、c是实数,且a2+b2+c2=1根据柯西不等式(a2+b2+c2)(x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论