版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年武汉民政职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.已知f(x)=3mx2-2(m+n)x+n(m≠0)满足f(0)•f(1)>0,设x1,x2是方程f(x)=0的两根,则|x1-x2|的取值范围为()
A.[,)
B.[,)
C.[,)
D.[,)答案:A2.4名学生参加3项不同的竞赛,则不同参赛方法有()A.34B.A43C.3!D.43答案:由题意知本题是一个分步计数问题,首先第一名学生从三种不同的竞赛中选有三种不同的结果,第二名学生从三种不同的竞赛中选有3种结果,同理第三个和第四个同学从三种竞赛中选都有3种结果,∴根据分步计数原理得到共有3×3×3×3=34故选A.3.如图,P-ABCD是正四棱锥,ABCD-A1B1C1D1是正方体,其中AB=2,PA=6.
(1)求证:PA⊥B1D1;
(2)求平面PAD与平面BDD1B1所成锐二面角的余弦值.答案:以D1为原点,D1A1所在直线为x轴,D1C1所在直线为y轴,D1D所在直线为z轴建立空间直角坐标系,则D1(0,0,0),A1(2,0,0),B1(2,2,0),C1(0,2,0),D(0,0,2),A(2,0,2),B(2,2,2),C(0,2,2),P(1,1,4).(1)证明:∵AP=(-1,1,2),D1B1=(2,2,0),∴AP•D1B1=-2+2+0=0,∴PA⊥B1D1.(2)平面BDD1B1的法向量为AC=(-2,2,0).DA=(2,0,0),OP=(1,1,2).设平面PAD的法向量为n=(x,y,z),则n⊥DA,n⊥DP.∴2x=0x+y+2z=0∴x=0y=-2z.取n=(0,-2,1),设所求锐二面角为θ,则cosθ=|n•AC||n|•|AC|=|0-4+0|22×5=105.4.已知向量表示“向东航行1km”,向量表示“向南航行1km”,则向量表示()
A向东南航行km
B.向东南航行2km
C.向东北航行km
D.向东北航行2km答案:A5.如图,⊙O与⊙O′交于
A,B,⊙O的弦AC与⊙O′相切于点A,⊙O′的弦AD与⊙O相切于A点,则下列结论中正确的是()
A.∠1>∠2
B.∠1=∠2
C.∠1<∠2
D.无法确定
答案:B6.函数y=a|x|(a>1)的图象是()
A.
B.
C.
D.
答案:B7.给出命题:
①线性回归分析就是由样本点去寻找一条贴近这些点的直线;
②利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系表示;
③通过回归方程=bx+a及其回归系数b可以估计和预测变量的取值和变化趋势;
④线性相关关系就是两个变量间的函数关系.其中正确的命题是(
)
A.①②
B.①④
C.①②③
D.①②③④答案:D8.已知集合A={0,2,a2},B={1,a},若A∪B={0,1,2,4},则实数a的值为______.答案:根据题意,集合A={0,2,a2},B={1,a},且A∪B={0,1,2,4},则有a=4,或a=4,a=4时,A={0,2,16},B={1,4},A∪B={0,1,2,4,16},不合题意,舍去;a=2时,A={0,2,4},B={1,2},A∪B={0,1,2,4},符合;故a=2.9.口袋内有100个大小相同的红球、白球和黑球,其中有45个红球,从中摸出1个球,摸出白球的概率为0.23,则摸出黑球的概率为______.答案:∵口袋内有100个大小相同的红球、白球和黑球从中摸出1个球,摸出白球的概率为0.23,∴口袋内白球数为32个,又∵有45个红球,∴为32个.从中摸出1个球,摸出黑球的概率为32100=0.32故为0.3210.△ABC中,∠A外角的平分线与此三角形外接圆相交于P,求证:BP=CP.
答案:证明:∠CBP=∠CAP=∠PAD又∠1=∠2由∠CAD=∠ACB+∠CBA=∠ACB+∠CBP+∠2=∠ACB+∠1+∠CBP=∠BCP+∠CBP∴∠BCP=∠CBP,∴BP=CP.11.与直线2x+y+1=0的距离为的直线的方程是()
A.2x+y=0
B.2x+y-2=0
C.2x+y=0或2x+y-2=0
D.2x+y=0或2x+y+2=0答案:D12.在平面直角坐标系中,经伸缩变换后曲线方程变换为椭圆方程,此伸缩变换公式是(
)A.B.C.D.答案:B解析:解:因为在平面直角坐标系中,经伸缩变换后曲线方程变换为椭圆方程,设变换为,将其代入方程中,得到x,y的关系式,对应相等可知,选B13.如图,在正方体OABC-O1A1B1C1中,棱长为2,E是B1B的中点,则点E的坐标为()
A.(2,2,1)
B.(2,2,)
C.(2,2,)
D.(2,2,)
答案:A14.椭圆x=3cosθy=4sinθ的离心率是______.答案:∵x=3cosθy=4sinθ,∴(x3)2+(y4)2=cos2θ+sin2θ=1,即x29+y216=1,其中a2=16,b2=9,故c2=a2-b2=16-9=7(a>0,b>0,c>0),∴其离心率e=ca=74.故为:74.15.若一辆汽车每天行驶的路程比原来多19km,则该汽车在8天内行驶的路程s(km)就超过2200km;若它每天行驶的路程比原来少12km,则它行驶同样的路程s(km)就得花9天多的时间。这辆汽车原来每天行驶的路程(km)的范围是(
)
A.(259,260)
B.(258,260)
C.(257,260)
D.(256,260)答案:D16.某房间有四个门,甲要各进、出这个房间一次,不同的走法有多少种?()
A.12
B.7
C.16
D.64答案:C17.OA、OB(O为原点)是圆x2+y2=2的两条互相垂直的半径,C是该圆上任一点,且OC=λOA+μOB,则λ2+μ2=______.答案:∵OC=λOA+μOB,OA⊥OB∴OA?OB=0∴OA2=OB2=OC2=2∴OC2=(λOA+μOB)2=λ2OA2+μ2OB2=2(λ2+μ2)=2∴λ2+μ2=1故为:118.(选做题)那霉素发酵液生物测定,一般都规定培养温度为(37±1)°C,培养时间在16小时以上,某制药厂为了缩短时间,决定优选培养温度,试验范围固定在29~50°C,精确度要求±1°C,用分数法安排实验,令第一试点在t1处,第二试点在t2处,则t1+t2=(
).答案:7919.圆锥曲线G的一个焦点是F,与之对应的准线是,过F作直线与G交于A、B两点,以AB为直径作圆M,圆M与的位置关系决定G
是何种曲线之间的关系是:______
圆M与的位置相离相切相交G
是何种曲线答案:设圆锥曲线过焦点F的弦为AB,过A、B分别向相应的准线作垂线AA',BB',则由第二定义得:|AF|=e|AA'|,|BF|=e|BB'|,∴|AF|+|BF|2=|AA′|+|BB′|2
?
e.设以AB为直径的圆半径为r,圆心到准线的距离为d,即有r=de,椭圆的离心率
0<e<1,此时r<d,圆M与准线相离;抛物线的离心率
e=1,此时r=d,圆M与准线相切;双曲线的离心率
e>1,此时r>d,圆M与准线相交.故为:椭圆、抛物线、双曲线.20.参数方程x=cosαy=1+sinα(α为参数)化成普通方程为
______.答案:∵x=cosαy=1+sinα(α为参数)∴x2+(y-1)2=cos2α+sin2α=1.即:参数方程x=cosαy=1+sinα(α为参数)化成普通方程为:x2+(y-1)2=1.故为:x2+(y-1)2=1.21.双曲线的中心在坐标原点,离心率等于2,一个焦点的坐标为(2,0),则此双曲线的渐近线方程是______.答案:∵离心率等于2,一个焦点的坐标为(2,0),∴ca=2,
c=2且焦点在x轴上,∴a=1∵c2=a2+b2∴b2=3∴b=3.所以双曲线的渐进方程为y=±3x.故为y=±3x22.如果圆x2+y2+Gx+Ey+F=0与x轴相切于原点,那么()A.F=0,G≠0,E≠0B.E=0,F=0,G≠0C.G=0,F=0,E≠0D.G=0,E=0,F≠0答案:圆与x轴相切于原点,则圆心在y轴上,G=0,圆心的纵坐标的绝对值等于半径,F=0,E≠0.故选C.23.构成多面体的面最少是(
)
A.三个
B.四个
C.五个
D.六个答案:B24.(选做题)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ=与曲线(t为参数)相较于A,B来两点,则线段AB的中点的直角坐标为(
)。答案:(2.5,2.5)25.如图,△PAB所在的平面α和梯形ABCD所在的平面β互相垂直,且AD⊥α,AD=4,BC=8,AB=6,若tan∠ADP+2tan∠BCP=10,则点P在平面α内的轨迹是()A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分答案:由AD⊥α,可得AD⊥AP,tan∠ADP=APAD,四边形ABCD是梯形,则AD∥BC,可得BC⊥α,BC⊥BP,则tan∠BCP=BPBC,又由tan∠ADP+2tan∠BCP=10,且AD=4,BC=8,可得AP+BP=40,又由AB=6,则AP+BP>AB,故P在平面α内的轨迹是椭圆的一部分,故选B.26.将参数方程化为普通方程为(
)
A.y=x-2
B.y=x+2
C.y=x-2(2≤x≤3)
D.y=x+2(0≤y≤1)答案:C27.已知图所示的矩形,其长为12,宽为5.在矩形内随同地措施1000颗黄豆,数得落在阴影部分的黄豆数为550颗.则可以估计出阴影部分的面积约为______.答案:∵矩形的长为12,宽为5,则S矩形=60∴S阴S矩=S阴60=5501000,∴S阴=33,故:33.28.对于数25,规定第1次操作为23+53=133,第2次操作为13+33+33=55,如此反复操作,则第2012次操作后得到的数是
()A.25B.250C.55D.133答案:第1次操作为23+53=133,第2次操作为13+33+33=55,第3次操作为53+53=250,第4次操作为23+53+03=133∴操作结果,以3为周期,循环出现∵2012=3×670+2∴第2012次操作后得到的数与第2次操作后得到的数相同∴第2012次操作后得到的数是55故选C.29.对变量x、y有观测数据(xi,yi)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(ui,vi)(i=1,2,…,10),得散点图2.由这两个散点图可以判断()
A.变量x与y正相关,u与v正相关
B.变量x与y正相关,u与v负相关
C.变量x与y负相关,u与v正相关
D.变量x与y负相关,u与v负相关答案:C30.如图给出了一个算法程序框图,该算法程序框图的功能是()A.求a,b,c三数的最大数B.求a,b,c三数的最小数C.将a,b,c按从小到大排列D.将a,b,c按从大到小排列答案:逐步分析框图中的各框语句的功能,第一个条件结构是比较a,b的大小,并将a,b中的较小值保存在变量a中,第二个条件结构是比较a,c的大小,并将a,c中的较小值保存在变量a中,故变量a的值最终为a,b,c中的最小值.由此程序的功能为求a,b,c三个数的最小数.故选B31.直线kx-y+1=3k,当k变动时,所有直线都通过定点()
A.(0,0)
B.(0,1)
C.(3,1)
D.(2,1)答案:C32.计算机的程序设计语言很多,但各种程序语言都包含下列基本的算法语句:______,______,______,______,______.答案:计算机的程序设计语言很多,但各种程序语言都包含下列基本的算法语句:输入语句,输出语句,赋值语句,条件语句,循环语句.故为:输入语句,输出语句,赋值语句,条件语句,循环语句.33.已知m2+n2=1,a2+b2=2,则am+bn的最大值是()
A.1
B.
C.
D.以上都不对答案:C34.设两个正态分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)的密度曲线如图所示,则有()
A.μ1<μ2,σ1<σ2
B.μ1<μ2,σ1>σ2
C.μ1>μ2,σ1<σ2
D.μ1>μ2,σ1>σ2
答案:A35.四名男生三名女生排成一排,若三名女生中有两名相邻,但三名女生不能连排,则不同的排法数有()A.3600B.3200C.3080D.2880答案:由题意知本题需要利用分步计数原理来解,∵三名女生有且仅有两名相邻,∴把这两名女生看做一个元素,与另外一名女生作为两个元素,有C32A22种结果,把男生排列有A44,把女生在男生所形成的5个空位中排列有A52种结果,共有C32A22A44A52=2880种结果,故选D.36.不等式的解集是
(
)A.B.C.D.答案:B解析:当时,不等式成立;当时,不等式可化为,解得综上,原不等式解集为故选B37.在研究打酣与患心脏病之间的关系中,通过收集数据、整理分析数据得“打酣与患心脏病有关”的结论,并且有99%以上的把握认为这个结论是成立的.下列说法中正确的是()
A.100个心脏病患者中至少有99人打酣
B.1个人患心脏病,则这个人有99%的概率打酣
C.100个心脏病患者中一定有打酣的人
D.100个心脏病患者中可能一个打酣的人都没有答案:D38.已知抛物线C:x2=2py(p>0)的焦点为F,抛物线上一点A的横坐标为x1(x1>0),过点A作抛物线C的切线l1交x轴于点D,交y轴于点Q,交直线l:y=p2于点M,当|FD|=2时,∠AFD=60°.
(1)求证:△AFQ为等腰三角形,并求抛物线C的方程;
(2)若B位于y轴左侧的抛物线C上,过点B作抛物线C的切线l2交直线l1于点P,交直线l于点N,求△PMN面积的最小值,并求取到最小值时的x1值.答案:(1)设A(x1,x122p),则A处的切线方程为l1:y=x1px-x122p,可得:D(x12,0),Q(0,-x212p)∴|FQ|=p2+x212p=|AF|;∴△AFQ为等腰三角形.由点A,Q,D的坐标可知:D为线段AQ的中点,∴|AF|=4,得:p2+x212p=4x21+p2=16∴p=2,C:x2=4y.(2)设B(x2,y2)(x2<0),则B处的切线方程为y=x22x-x224联立y=x22x-x224y=x12x-x214得到点P(x1+x22,x1x24),联立y=x12x-x214y=1得到点M(x12+2x1,1).同理N(x22+2x2,1),设h为点P到MN的距离,则S△=12|MN|•h=12×(x12+2x1-x22-2x2)(1-x1x24)=(x2-x1)(4-x1x2)216x1x2
①设AB的方程为y=kx+b,则b>0,由y=kx+bx2=4y得到x2-4kx-4b=0,得x1+x2=4kx1x2=-4b代入①得:S△=16k2+16b(4+4b)264b=(1+b)2k2+bb,要使面积最小,则应k=0,得到S△=(1+b)2bb②令b=t,得S△(t)=(1+t2)2t=t3+2t+1t,则S′△(t)=(3t2-1)(t2+1)t2,所以当t∈(0,33)时,S(t)单调递减;当t∈(33,+∞)时,S(t)单调递增,所以当t=33时,S取到最小值为1639,此时b=t2=13,k=0,所以y1=13,解得x1=233.故△PMN面积取得最小值时的x1值为233.39.设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若A1A3=λA1A2(λ∈R),A1A4=μA1A2(μ∈R),且1λ+1μ=2,则称A3,A4调和分割A1,A2,已知点C(c,0),D(d,O)(c,d∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是()A.C可能是线段AB的中点B.D可能是线段AB的中点C.C,D可能同时在线段AB上D.C,D不可能同时在线段AB的延长线上答案:由已知可得(c,0)=λ(1,0),(d,0)=μ(1,0),所以λ=c,μ=d,代入1λ+1μ=2得1c+1d=2(1)若C是线段AB的中点,则c=12,代入(1)d不存在,故C不可能是线段AB的中,A错误;同理B错误;若C,D同时在线段AB上,则0≤c≤1,0≤d≤1,代入(1)得c=d=1,此时C和D点重合,与条件矛盾,故C错误.故选D40.构成多面体的面最少是()
A.三个
B.四个
C.五个
D.六个答案:B41.如图所示,I为△ABC的内心,求证:△BIC的外心O与A、B、C四点共圆.答案:证明:连接OB、BI、OC,由O是外心知∠IOC=2∠IBC.由I是内心知∠ABC=2∠IBC.从而∠IOC=∠ABC.同理∠IOB=∠ACB.而∠A+∠ABC+∠ACB=180°,故∠BOC+∠A=180°,于是O、B、A、C四点共圆.42.设a、b为单位向量,它们的夹角为90°,那么|a+3b|等于()A.7B.10C.13D.4答案:∵a,b它们的夹角为90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10,|a+3b|=10.故选B.43.已知=(3,4),=(5,12),与则夹角的余弦为()
A.
B.
C.
D.答案:A44.点P1,P2是线段AB的2个三等分点,若P∈{P1,P2},则P分有线段AB的比λ的最大值和最小值分别为()
A.3,
B.3,
C.2,
D.2,1答案:C45.如图,平面内有三个向量OA,OB,OC,其中OA与OB的夹角为120°,OA与OC的夹角为30°.且|OA|=1,|OB|=1,|OC|=23,若|OC|=λOA+μOB(λ,μ∈R),求λ+μ的值.答案:如图,OC=OD+OE=λOA+μOB,在△OCD中,∠OD=30°,∠OCD=∠COB=90°,可求|OD|=4,同理可求|OE|=2,∴λ=4,μ=2,∴λ+μ=6.46.系数矩阵为.2132.,解为xy=12的一个线性方程组是______.答案:可设线性方程组为2132xy=mn,由于方程组的解是xy=12,∴mn=47,∴所求方程组为2x+y=43x+2y=7,故为:2x+y=43x+2y=7.47.已知向量a=(1,2),b=(2,-3).若向量c满足(c+a)∥b,c⊥(a+b),则c=______.答案:设c=(x,y),则c+a=(x+1,y+2),又(c+a)∥b,∴2(y+2)+3(x+1)=0.
①又c⊥(a+b),∴(x,y)•(3,-1)=3x-y=0.
②解①②得x=-79,y=-73.故应填:(-79,-73).48.5颗骰子同时掷出,共掷100次则至少一次出现全为6点的概率为(
)A.B.C.D.答案:C解析:5颗骰子同时掷出,没有全部出现6点的概率是,共掷100次至少一次出现全为6点的概率是.49.=(2,1),=(3,4),则向量在向量方向上的投影为()
A.
B.
C.2
D.10答案:C50.某学院有四个饲养房,分别养有18,54,24,48只白鼠供实验用,某项实验需要抽取24只白鼠,你认为最合适的抽样方法是()A.在每个饲养房各抽取6只B.把所以白鼠都编上号,用随机抽样法确定24只C.在四个饲养房应分别抽取3,9,4,8只D.先确定这四个饲养房应分别抽取3,9,4,8只样品,再由各饲养房将白鼠编号,用简单随机抽样确定各自要抽取的对象答案:A中对四个饲养房平均摊派,但由于各饲养房所养数量不一,反而造成了各个个体入选概率的不均衡,是错误的方法.B中保证了各个个体入选概率的相等,但由于没有注意到处在四个不同环境中会产生差异,不如采用分层抽样可靠性高,且统一编号统一选择加大了工作量.C中总体采用了分层抽样,但在每个层次中没有考虑到个体的差层(如健壮程度,灵活程度),貌似随机,实则各个个体概率不等.故选D.第2卷一.综合题(共50题)1.有这样一段“三段论”推理,对于可导函数f(x),大前提:如果f’(x0)=0,那么x=x0是函数f(x)的极值点;小前提:因为函数f(x)=x3在x=0处的导数值f’(0)=0,结论:所以x=0是函数f(x)=x3的极值点.以上推理中错误的原因是______错误(填大前提、小前提、结论).答案:∵大前提是:“对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点”,不是真命题,因为对于可导函数f(x),如果f'(x0)=0,且满足当x>x0时和当x<x0时的导函数值异号时,那么x=x0是函数f(x)的极值点,∴大前提错误,故为:大前提.2.若关于x的不等式xa2-2xa-3<0在[-1,1]上恒成立,则实数a的取值范围是
A.[-1,1]
B.[-1,3]
C.(-1,1)
D.(-1,3)答案:D3.已知f(x+1)=x2+2x+3,则f(2)的值为______.答案:由f(x+1)=x2+2x+3,得f(1+1)=12+2×1+3=6,故为:6.4.已知△ABC三个顶点的坐标为A(1,3)、B(-1,-1)、C(-3,5),求这个三角形外接圆的方程.答案:设圆的方程为(x-a)2+(y-b)2=r2,则(1-a)2+(3-b)2=r2(-1-a)2+(-1-b)2=r2(-3-a)2+(5-b)2=r2,整理得a+2b-2=02a-b+6=0,解之得a=-2,b=2,可得r2=10,因此,这个三角形外接圆的方程为(x+2)2+(y-2)2=10.5.在测量某物理量的过程中,因仪器和观察的误差,使得n次测量分别得到a1,a2,…,an,共n个数据.我们规定所测量的“量佳近似值”a是这样一个量:与其他近似值比较,a与各数据的差的平方和最小.依此规定,从a1,a2,…,an推出的a=______.答案:∵所测量的“量佳近似值”a是与其他近似值比较,a与各数据的差的平方和最小.根据均值不等式求平方和的最小值知这些数的底数要尽可能的接近,∴a是所有数字的平均数,∴a=a1+a2+…+ann,故为:a1+a2+…+ann6.由圆C:x=2+cosθy=3+sinθ(θ为参数)求圆的标准方程.答案:圆的参数方程x=2+cosθy=3+sinθ变形为:cosθ=2-xsinθ=3-y,根据同角的三角函数关系式cos2θ+sin2θ=1,可得到标准方程:(x-2)2+(y-3)2=1.所以为(x-2)2+(y-3)2=1.7.(《几何证明选讲》选做题)如图,在Rt△ABC中,∠C=90°,⊙O分别切AC、BC于M、N,圆心O在AB上,⊙O的半径为4,OA=5,则OB的长为______.答案:连接OM,ON,则∵⊙O分别切AC、BC于M、N∴OM⊥AC,ON⊥BC∵∠C=90°,∴OMCN为正方形∵⊙O的半径为4,OA=5∴AM=3∴CA=7∵ON∥AC∴ONAC=OBBA∴47=OBOB+5∴OB=203故为:2038.若向量=(1,λ,2),=(2,-1,2)且与的夹角余弦为,则λ等于(
)
A.2
B.-2
C.-2或
D.2或答案:C9.给出20个数:87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88它们的和是()A.1789B.1799C.1879D.1899答案:由题意知本题是一个求和问题,87+91+94+88+93+91+89+87+92+86+90+92+88+90+91+86+89+92+95+88=1799,故选B.10.若直线x-y-1=0与直线x-ay=0的夹角为,则实数a等于()
A.
B.0
C.
D.0或答案:D11.甲、乙、丙、丁四位同学各自对A、B两个变量的线性相关性作试验,并用回归分析方法分别求得相关系数r与残差平方和m如表:
则哪位同学的实验结果体现A、B两个变量更强的线性相关性()
A.丙
B.乙
C.甲
D.丁答案:C12.(x+2y)4展开式中各项的系数和为______.答案:令x=y=1,可得(1+2)4=81故为:81.13.在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sinθ与ρcosθ=-1的交点的极坐标为
______.答案:两条曲线的普通方程分别为x2+y2=2y,x=-1.解得x=-1y=1.由x=ρcosθy=ρsinθ得点(-1,1),极坐标为(2,3π4).故填:(2,3π4).14.棱长为1的正方体ABCD-A1B1C1D1的8个顶点都在球O的表面上,E,F分别是棱AA1,DD1的中点,则直线EF被球O截得的线段长为()
A.
B.1
C.1+
D.答案:D15.已知两点P1(2,-1)、P2(0,5),点P在P1P2延长线上,且满足P1P2=-2PP2,则P点的坐标为______.答案:设分点P(x,y),P1(2,-1)、P2(0,5),∴P1P2=(-2,6),PP2=(-x,5-y),∵P1P2=-2PP2,∴(-2,6)=-2(-x,5-y)-2=-2x,6=2y-10,∴x=-1,y=8∴P(-1,8).16.沿着正四面体OABC的三条棱OA、OB、OC的方向有大小等于1、2、3的三个力f1、f2、f3.试求此三个力的合力f的大小以及此合力与三条棱所夹角的余弦.答案:用a、b、c分别代表棱OA、OB、OC上的三个单位向量,则f1=a,f2=2b,f3=3c,则f=f1+f2+f3=a+2b+3c,∴|f|2=(a+2b+3c)?(a+2b+3c)=|a|2+4|b|2+9|c|2+4a?b+6a?c+12b?c=1+4+9+4|a||b|cos<a,b>+6|a||c|cos<a,c>+12|b||c|cos<b,c>=14+4cos60°+6cos60°+12cos60°=14+2+3+6=25.∴|f|=5,即所求合力的大小为5,且cos<f,a>=f?a|f||a|=|a|2+2a?b+3a?c5=1+1+325=710.同理,可得cos<f,b>=45,cos<f,c>=910.17.已知⊙C1:x2+y2+2x+8y-8=0,⊙C2:x2+y2-4x-4y-2=0,则的位置关系为()
A.相切
B.相离
C.相交
D.内含答案:C18.设a∈(0,1)∪(1,+∞),对任意的x∈(0,12],总有4x≤logax恒成立,则实数a的取值范围是______.答案:∵a∈(0,1)∪(1,+∞),当0<x≤12时,函数y=4x的图象如下图所示:∵对任意的x∈(0,12],总有4x≤logax恒成立,若不等式4x<logax恒成立,则y=logax的图象恒在y=4x的图象的上方(如图中虚线所示)∵y=logax的图象与y=4x的图象交于(12,2)点时,a=22,故虚线所示的y=logax的图象对应的底数a应满足22<a<1.故为:(22,1).19.平行投影与中心投影之间的区别是
______.答案:平行投影与中心投影之间的区别是平行投影的投影线互相平行,而中心投影的投影线交于一点,故为:平行投影的投影线互相平行,而中心投影的投影线交于一点20.求证:若圆内接五边形的每个角都相等,则它为正五边形.答案:证明:设圆内接五边形为ABCDE,圆心是O.连接OA,OB,OCOD,OE,可得五个三角形∵OA=OB=OC=OD=OE=半径,∴有五个等腰三角形在△OAB、△OBC、△OCD、△ODE、△OEA中则∠OAB=∠OBA,∠OBC=∠OCB,∠OCD=∠ODC,∠ODE=∠OED,∠OEA=∠OAE因为所有内角相等,所以∠OAE+∠OAB=∠OBA+∠OBC,所以∠OAE=∠OBC同理证明∠OBA=∠OCD,∠OCB=∠OED,∠ODC=∠OEA,∠OED=∠OAB则△OAB、△OBC、△OCD、△ODE、△OEA中,∠AOB=∠BOC=∠COD=∠DOE=∠EOA∴△OAB≌△OBC≌△OCD≌△ODE≌△OEA
(SAS边角边定律)∴AB=BC=CD=DE=EA∴五边形ABCDE为正五边形21.某年级共有210名同学参加数学期中考试,随机抽取10名同学成绩如下:
成绩(分)506173859094人数221212则总体标准差的点估计值为______(结果精确到0.01).答案:由题意知本题需要先做出这组数据的平均数50×2+61×2+73+2×85+90+2×9410=74.9,这组数据的总体方差是(2×24.92+1.92+2×13.92+15.12+2×19.12)÷10=309.76,∴总体标准差是309.76≈17.60,故为:17.60.22.若曲线x24+k+y21-k=1表示双曲线,则k的取值范围是
______.答案:要使方程为双曲线方程需(4+k)(1-k)<0,即(k-1)(k+4)>0,解得k>1或k<-4故为(-∞,-4)∪(1,+∞)23.下列关于结构图的说法不正确的是()
A.结构图中各要素之间通常表现为概念上的从属关系和逻辑上的先后关系
B.结构图都是“树形”结构
C.简洁的结构图能更好地反映主体要素之间关系和系统的整体特点
D.复杂的结构图能更详细地反映系统中各细节要素及其关系答案:B24.求两条平行直线3x-4y-11=0与6x-8y+4=0的距离是()
A.3
B.
C.
D.4答案:B25.(坐标系与参数方程)
从极点O作直线与另一直线ρcosθ=4相交于点M,在OM上取一点P,使OM•OP=12.
(1)求点P的轨迹方程;
(2)设R为直线ρcosθ=4上任意一点,试求RP的最小值.答案:(1)设动点P的坐标为(ρ,θ),M的坐标为(ρ0,θ),则ρρ0=12.∵ρ0cosθ=4,∴ρ=3cosθ即为所求的轨迹方程.(2)由(1)知P的轨迹是以(32,0)为圆心,半径为32的圆,而直线l的解析式为x=4,所以圆与x轴的交点坐标为(3,0),易得RP的最小值为126.若A(0,2,198),B(1,-1,58),C(-2,1,58)是平面α内的三点,设平面α的法向量a=(x,y,z),则x:y:z=______.答案:AB=(1,-3,-74),AC=(-2,-1,-74),α•AB=0,α•AC=0,∴x=23yz=-43y,x:y:z=23y:y:(-43y)=2:3:(-4).故为2:3:-4.27.如图,设a,b,c,d>0,且不等于1,y=ax,y=bx,y=cx,y=dx在同一坐标系中的图象如图,则a,b,c,d的大小顺序()
A.a<b<c<d
B.a<b<d<c
C.b<a<d<c
D.b<a<c<d
答案:C28.已知a>0,且a≠1,解关于x的不等式:
答案:①当a>1时,原不等式解为{x|0<x≤loga2②当0<a<1时,原不等式解为{x|loga2≤x<0解析:原不等式等价于原不等式同解于7分由①②得1<ax<4,由③得从而1<ax≤210分①当a>1时,原不等式解为{x|0<x≤loga2②当0<a<1时,原不等式解为{x|loga2≤x<029.若a2+b2=c2,求证:a,b,c不可能都是奇数.答案:证明:假设a,b,c都是奇数,则a2,b2,c2都是奇数,得a2+b2为偶数,而c2为奇数,即a2+b2≠c2,这与a2+b2=c2相矛盾,所以假设不成立,故原命题成立.30.已知ABCD是平行四边形,P点是ABCD所在平面外的一点,连接PA、PB、PC、PD.设点E、F、G、H分别为△PAB、△PBC、△PCD、△PDA的重心.
(1)试用向量方法证明E、F、G、H四点共面;
(2)试判断平面EFGH与平面ABCD的位置关系,并用向量方法证明你的判断.答案:(1)证明略(2)平面EFGH∥平面ABCD解析:(1)
分别延长PE、PF、PG、PH交对边于M、N、Q、R点,因为E、F、G、H分别是所在三角形的重心,所以M、N、Q、R为所在边的中点,顺次连接M、N、Q、R得到的四边形为平行四边形,且有=,=,=,
=∴=+=(-)+(-)=(-)+(-)=(+)又∵=-=-=∴=(+),∴=+由共面向量定理知:E、F、G、H四点共面.(2)
由(1)得=,故∥.又∵平面ABC,EG平面ABC.∴EG∥平面ABC.又∵=-=-=∴MN∥EF,又∵MN平面ABC,EF平面ABC,EF∥平面ABC.∵EG与EF交于E点,∴平面EFGH∥平面ABCD.31.设a,b,λ都为正数,且a≠b,对于函数y=x2(x>0)图象上两点A(a,a2),B(b,b2).
(1)若AC=λCB,则点C的坐标是______;
(2)过点C作x轴的垂线,交函数y=x2(x>0)的图象于D点,由点C在点D的上方可得不等式:______.答案:(1)设点C(x,y),因为点A(a,a2),B(b,b2),AC=λCB,则(x-a,y-a2)=λ(b-x,b2-y),所以:x=a+λb1+λ,y=a2+λb21+λ(2)因为点C在点D的上方,则y>yD,所以a2+λb21+λ>(a+λb1+λ)232.给定两个长度为1的平面向量OA和OB,它们的夹角为90°.如图所示,点C在以O为圆心的圆弧AB上变动,若OC=xOA+yOB,其中x,y∈R,则xy的范围是______.答案:由OC=xOA+yOB?OC2=x2OA2+y2OB2+2xyOA?OB,又|OC|=|OA|=|OB|=1,OA?OB=0,∴1=x2+y2≥2xy,得xy≤12,而点C在以O为圆心的圆弧AB上变动,得x,y∈[0,1],于是,0≤xy≤12,故为[0,12].33.已知集合A={(x,y)|y=x2,x∈R},B={(x,y)|y=x,x∈R},则集合A∩B中的元素个数为(
)
A.0个
B.1个
C.2个
D.无穷多个答案:C34.如图,在△ABC中,∠ACB=90°,AB=8,∠BAC=60°,PC⊥平面ABC,PC=4,M为AB边上的一个动点,求PM的最小值.答案:过C作CM⊥AB,连接PM,因为PC⊥AB,所以AB⊥平面PCM,所以PM⊥AB,此时PM最短,∵∠BAC=60°,AB=8,∴AC=AB?cos60°=4.∴CM=AC?sin60°=4?32=23.∴PM=PC2+CM2=16+12=27.35.对于空间中的三个向量,
,
,它们一定是()
A.共面向量
B.共线向量
C.不共面向量
D.以上均不对答案:A36.全称命题“任意x∈Z,2x+1是整数”的逆命题是()
A.若2x+1是整数,则x∈Z
B.若2x+1是奇数,则x∈Z
C.若2x+1是偶数,则x∈Z
D.若2x+1能被3整除,则x∈Z
E.若2x+1是整数,则x∈Z答案:A37.若向量a=(4,2,-4),b=(6,-3,2),则(2a-3b)•(a+2b)=______.答案:∵2a-3b=(-10,13,-14),a+2b=(16,-4,0)∴(2a-3b)•(a+2b)=-10×16+13×(-4)=-212故为-21238.教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有()
A.10种
B.25种
C.52种
D.24种答案:D39.已知当m∈R时,函数f(x)=m(x2-1)+x-a的图象和x轴恒有公共点,求实数a的取值范围.答案:(1)m=0时,f(x)=x-a是一次函数,它的图象恒与x轴相交,此时a∈R.(2)m≠0时,由题意知,方程mx2+x-(m+a)=0恒有实数解,其充要条件是△=1+4m(m+a)=4m2+4am+1≥0.又只需△′=(4a)2-16≤0,解得-1≤a≤1,即a∈[-1,1].∴m=0时,a∈R;m≠0时,a∈[-1,1].40.关于x的方程ax+b=0,当a,b满足条件______
时,方程的解集是有限集;满足条件______
时,方程的解集是无限集;满足条件______
时,方程的解集是空集.答案:关于x的方程ax+b=0,有一个解时,为有限集,所以a,b满足条件是:a≠0,b∈R;满足条件a=0,b=0时,方程有无数组解,方程的解集是无限集;满足条件
a=0,b≠0
时,方程无解,方程的解集是空集.故为:a≠0,b∈R;a=0,b=0;
a=0,b≠0.41.圆心在x轴上,且过两点A(1,4),B(3,2)的圆的方程为______.答案:设圆心坐标为(m,0),半径为r,则圆的方程为(x-m)2+y2=r2,∵圆经过两点A(1,4)、B(3,2)∴(1-m)2+42=r2(3-m)2+22=r2解得:m=-1,r2=20∴圆的方程为(x+1)2+y2=20故为:(x+1)2+y2=2042.过点M(0,1)作直线,使它被两直线l1:x-3y+10=0,l2:2x+y-8=0所截得的线段恰好被M所平分,求此直线方程.答案:设所求直线与已知直线l1,l2分别交于A、B两点.∵点B在直线l2:2x+y-8=0上,故可设B(t,8-2t).又M(0,1)是AB的中点,由中点坐标公式得A(-t,2t-6).∵A点在直线l1:x-3y+10=0上,∴(-t)-3(2t-6)+10=0,解得t=4.∴B(4,0),A(-4,2),故所求直线方程为:x+4y-4=0.43.已知两个点M(-5,0)和N(5,0),若直线上存在点P,使|PM|-|PN|=6,则称该直线为“B型直线”给出下列直线①y=x+1;②y=2;③y=x④y=2x+1;其中为“B型直线”的是()
A.①③
B.①②
C.③④
D.①④答案:B44.(1+2x)10的展开式的第4项是______.答案:(1+2x)10的展开式的第4项为T4=C310
(2X)3=960x3,故为960x3.45.根据下面的要求,求满足1+2+3+…+n>500的最小的自然数n.
(1)画出执行该问题的程序框图;
(2)以下是解决该问题的一个程序,但有几处错误,请找出错误并予以更正.
i=1S=1n=0DO
S<=500
S=S+i
i=i+1
n=n+1WENDPRINT
n+1END.答案:(1)程序框图如左图所示.或者,如右图所示:(2)①DO应改为WHILE;
②PRINT
n+1
应改为PRINT
n;
③S=1应改为S=0.46.(文科做)
f(x)=1x
(x<0)(13)x(x≥0),则不等式f(x)≥13的解集是______.答案:x<0时,f(x)=1x≥13,解得x∈?;x≥0时,f(x)=(13)x≥13,解得x≤1,故0≤x≤1.综上所述,不等式f(x)≥13的解集为{x|0≤x≤1}.故为:{x|0≤x≤1}.47.已知某种从太空飞船中带回的植物种子每粒成功发芽的概率都为,某植物研究所分两个小组分别独立开展该种子的发芽试验,每次试验种一粒种子,假定某次试验种子发芽,则称该次试验是成功的,如果种子没有发芽,则称该次试验是失败的.
(1)第一个小组做了三次试验,求至少两次试验成功的概率;
(2)第二个小组进行试验,到成功了4次为止,求在第四次成功之前共有三次失败,且恰有两次连续失败的概率.答案:(1)(2)解析:(1)第一个小组做了三次试验,至少两次试验成功的概率是P(A)=·+=.(2)第二个小组在第4次成功前,共进行了6次试验,其中三次成功三次失败,且恰有两次连续失败,其中各种可能的情况种数为=12.因此所求的概率为P(B)=12×·=.48.若直线ax+by+1=0与圆x2+y2=1相离,则点P(a,b)的位置是()
A.在圆上
B.在圆外
C.在圆内
D.以上都有可能答案:C49.解不等式logx(2x+1)>logx2.答案:当0<x<1,logx(2x+1)>logx2?0<2x+1<20<x<1,解得0<x<12;当x>1,logx(2x+1)>logx2?2x+1>2x>1,解得x>1.综上所述,原不等式的解集为{x|0<x<12或x>1}.50.若以(y+2)2=4(x-1)上任一点P为圆心作与y轴相切的圆,那么这些圆必定过平面内的点()
A.(1,-2)
B.(3,-2)
C.(2,-2)
D.不存在这样的点答案:C第3卷一.综合题(共50题)1.已知镭经过100年,质量便比原来减少4.24%,设质量为1的镭经过x年后的剩留量为y,则y=f(x)的函数解析式为(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100xD.0.9576100x答案:由题意可得,对于函数,当x=100时,y=95.76%=0.9576,结合选项检验选项A:x=100,y=0.0424,故排除A选项B:x=100,y=0.9576,故B正确故选:B解析:已知镭经过100年,质量便比原来减少4.24%,设质量为1的镭经过x年后的剩留量为y,则y=f(x)的函数解析式为(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100x2.已知复数w满足w-4=(3-2w)i(i为虚数单位),z=5w+|w-2|,求一个以z为根的实系数一元二次方程.答案:[解法一]∵复数w满足w-4=(3-2w)i,∴w(1+2i)=4+3i,∴w(1+2i)(1-2i)=(4+3i)(1-2i),∴5w=10-5i,∴w=2-i.∴z=52-i+|2-i-2|=5(2+i)(2-i)(2+i)+1=2+i+1=3+i.若实系数一元二次方程有虚根z=3+i,则必有共轭虚根.z=3-i.∵z+.z=6,z•.z=10,∴所求的一个一元二次方程可以是x2-6x+10=0.[解法二]设w=a+b,(a,b∈Z),∴a+bi-4=3i-2ai+2b,得a-4=2bb=3-2a解得a=2b=-1,∴w=2-i,以下解法同[解法一].3.过点(-1,3)且垂直于直线x-2y+3=0的直线方程为(
)
A.2x+y-1=0
B.2x+y-5=0
C.x+2y-5=0
D.x-2y+7=0答案:A4.如图,AC是⊙O的直径,∠ACB=60°,连接AB,过A、B两点分别作⊙O的切线,两切线交于点P.若已知⊙O的半径为1,则△PAB的周长为______.答案:∵AC是⊙O的直径,∴∠ABC=90°,∠BAC=30°,CB=1,AB=3,∵AP为切线,∴∠CAP=90°,∠PAB=60°,又∵AP=BP,∴△PAB为正三角形,∴周长=33.故填:33.5.设两个正态分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)曲线如图所示,则有()
A.μ1<μ2,σ1>σ2
B.μ1<μ2,σ1<σ2
C.μ1>μ2,σ1>σ2
D.μ1>μ2,σ1<σ2
答案:A6.分析如图的程序:若输入38,运行右边的程序后,得到的结果是
______.答案:根据程序语句,其意义为:输入一个x,使得9<x<100a=x\10
为去十位数b=xMOD10
去余数,即取个位数x=10*b+a
重新组合数字,用原来二位数的十位当个位,个位当十位否则说明输入有误故当输入38时输出83故为:837.在(1+2x)5的展开式中,x2的系数等于______.(用数字作答)答案:由于(1+2x)5的展开式的通项公式为Tr+1=Cr5?(2x)r,令r=2求得x2的系数等于C25×22=40,故为40.8.如图,已知Rt△ABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径的圆与AB交于点D,则BD=______cm.答案:∵易知AB=32+42=5,又由切割线定理得BC2=BD?AB,∴42=BD?5∴BD=165.故为:1659.已知边长为1的正方形ABCD,则|AB+BC+CD|=______.答案:利用向量加法的几何性质,得AB+BC=AC∴AB+BC+CD=AD因为正方形的边长等于1所以|AB+BC+CD|=|AD|
=1故为:110.在用样本频率估计总体分布的过程中,下列说法正确的是()A.总体容量越大,估计越精确B.总体容量越小,估计越精确C.样本容量越大,估计越精确D.样本容量越小,估计越精确答案:∵用样本频率估计总体分布的过程中,估计的是否准确与总体的数量无关,只与样本容量在总体中所占的比例有关,∴样本容量越大,估计的月准确,故选C.11.盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于______.答案:从中随机取出2个球,每个球被取到的可能性相同,是古典概型从中随机取出2个球,所有的取法共有C52=10所取出的2个球颜色不同,所有的取法有C31?C21=6由古典概型概率公式知P=610=35故为3512.已知△ABC的顶点B、C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()
A.2
B.6
C.4
D.12答案:C13.直线l1:x+3=0与直线l2:x+3y-1=0的夹角的大小为______.答案:由于直线l1:x+3=0的斜率不存在,故它的倾斜角为90°,直线l2:x+3y-1=0的斜率为-33,故它的倾斜角为150>,故这两条直线的夹角为60°,故为60°.14.如图程序输出的结果是()
A.3,4
B.4,4
C.3,3
D.4,3
答案:B15.若点M到定点F和到定直线l的距离相等,则下列说法正确的是______.
①点M的轨迹是抛物线;
②点M的轨迹是一条与x轴垂直的直线;
③点M的轨迹是抛物线或一条直线.答案:当点F不在直线l上时,点M的轨迹是以F为焦点、l为准线的抛物线;而当点F在直线l上时,点M的轨迹是一条过点F,且与l垂直的直线.故为:③16.设ABC是坐标平面上的一个三角形,P为平面上一点且AP=15AB+25AC,则△ABP的面积△ABC的面积=()A.12B.15C.25D.23答案:连接CP并延长交AB于D,∵P、C、D三点共线,∴AP=λAD+μAC且λ+μ=1设AB=kAD,结合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面积与△ABC有相同的底边AB高的比等于|PD|与|CD|之比∴△ABP的面积与△ABC面积之比为25故选:C17.已知复数(m2-5m+6)+(m2-3m)i是纯虚数,则实数m=______.答案:当m2-5m+6=0m2-3m≠0时,即m=2或m=3m≠0且m≠3⇒m=2时复数z为纯虚数.故为:2.18.若函数y=f(x)的定义域是[12,2],则函数y=f(log2x)的定义域为______.答案:由题意知12≤log2x≤2,即log22≤log2x≤log24,∴2≤x≤4.故为:[2,4].19.已知平面直角坐标系内三点O(0,0),A(1,1),B(4,2)
(Ⅰ)求过O,A,B三点的圆的方程,并指出圆心坐标与圆的半径.
(Ⅱ)求过点C(-1,0)与条件(Ⅰ)的圆相切的直线方程.答案:(Ⅰ)∵O(0,0),A(1,1),B(4,2),∴线段OA中点坐标为(12,12),线段OB的中点坐标为(2,1),kOA=1,kOB=12,∴线段OA垂直平分线的方程为y-12=-(x-12),线段OB垂直平分线的方程为y-1=12(x-2),联立两方程解得:x=4y=-3,即圆心(4,-3),半径r=42+(-3)2=5,则所求圆的方程为x2+y2-8x+6y=0,圆心是(4,-3)、半径r=5;(Ⅱ)分两种情况考虑:当切线方程斜率不存在时,直线x=-1满足题意;当斜率存在时,设为k,切线方程为y=k(x+1),即kx-y+k=0,∴圆心到切线的距离d=r,即|5k+3|k2+1=5,解得:k=815,此时切线方程为y=815(x+1),综上,所求切线方程为x=-1或y=815(x+1).20.下列几何体各自的三视图中,有且仅有两个视图相同的是()
A.①②B.①③C.①④D.②④答案:正方体的三视图都相同,而三棱台的三视图各不相同,圆锥和正四棱锥的,正视图和侧视图相同,所以,正确为D.故选D21.如图,△ABC中,CD=2DB,设AD=mAB+nAC(m,n为实数),则m+n=______.答案:∵CD=2DB,∴B、C、D三点共线,由三点共线的向量表示,我们易得AD=23AB+13AC,由平面向量基本定理,我们易得m=23,n=13,∴m+n=1故为:122.今天为星期六,则今天后的第22010天是()A.星期一B.星期二C.星期四D.星期日答案:∵22010=8670=(7+1)670=C6700×7670×10+C6701×7669×11+C6702×7668×12+…+C6702010×70×1670∴22010除7的余数是1故今天为星期六,则今天后的第22010天是星期日故选D23.已知=2+i,则复数z=()
A.-1+3i
B.1-3i
C.3+i
D.3-i答案:B24.如图示程序运行后的输出结果为______.答案:该程序的作用是求数列ai=2i+3中满足条件的ai的值∵最终满足循环条件时i=9∴ai的值为21故为:2125.化简下列各式:
(1)AB+DF+CD+BC+FA=______;
(2)(AB+MB)+(BO+BC)+OM=______.答案:(1)AB+DF+CD+BC+FA=(AB+BC+CD+DF)+FA=AF+FA=0;(2)(AB+MB)+(BO+BC)+OM=(AB+BC)+MB+(BO+OM)=AC+MB+BM=AC+(MB+BM)=AC+0=AC,故为:(1)0;(2)AC26.对总数为N的一批零件抽取一个容量为30的样本,若每个零件被抽取的概率为0.25,则N等于()A.150B.200C.120D.100答案:∵每个零件被抽取的概率都相等,∴30N=0.25,∴N=120.故选C.27.如图,CD是⊙O的直径,AE切⊙O于点B,连接DB,若∠D=20°,则∠DBE的大小为()
A.20°
B.40°
C.60°
D.70°答案:D28.若图中的直线l1,l2,l3的斜率为k1,k2,k3则()
A.k1<k2<k3
B.k3<k1<k2
C.k2<k1<k3
D.k3<k2<k1
答案:C29.已知2a=3b=6c则有()
A.∈(2,3)
B.∈(3,4)
C.∈(4,5)
D.∈(5,6)答案:C30.集合{0,1}的子集有()个.A.1个B.2个C.3个D.4个答案:根据题意,集合{0,1}的子集有{0}、{1}、{0,1}、?,共4个,故选D.31.请写出所给三视图表示的简单组合体由哪些几何体组成.______.答案:由已知中的三视图我们可以判断出该几何体是由一个底面面积相等的圆锥和圆柱组合而成故为:圆柱体,圆锥体32.设集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y<0},那么M与P的关系为______.答案:由x+y<0,xy>0,?x<0,y<0.∴M=P.故为M=P.33.设a,b,c都是正数,求证:bca+cab+abc≥a+b+c.答案:证明:∵2(bca+acb+abc)=(bca+acb)+(bca+abc)+(acb+abc)≥2abc2ab+2acb2ac+2bca2bc=2c+2b+2a,∴bca+acb+abc≥a+b+c当且仅当a=b=c时,等号成立.34.某校有老师300人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n的样本,已知从女学生中抽取的人数为80,则n=()
A.171
B.184
C.200
D.392答案:C35.极坐标系中,若A(3,π3),B(-3,π6),则s△AOB=______(其中O是极点).答案:∵极坐标系中,A(3,π3),B(-3,π6),3cosπ3=32,3sinπ3=332;-3cosπ6=-332,-3sinπ6=-32.∴在平面直角坐标系中,A(32,332),B(-332,-32),∴OA=(32,332),OB=(-332,-32),∴|OA|
=
3,|OB|=3,∴cos<OA,OB>=-934-93494+274=-32,∴sin<OA,OB>=1-34=12,∴S△AOB=12×3×3×12=94.故为:94.36.过点P(3,0)作一直线,它夹在两条直线l1:2x-y-3=0,l2:x+y+3=0之间的线段恰被点P平分,该直线的方程是()
A.4x-y-6=0
B.3x+2y-7=0
C.5x-y-15=0
D.5x+y-15=0答案:C37.双曲线x2-4y2=4的两个焦点F1、F2,P是双曲线上的一点,满足·=0,则△F1PF2的面积为()
A.1
B.
C.2
D.答案:A38.用反证法证明:“方程ax2+bx+c=0,且a,b,c都是奇数,则方程没有整数根”正确的假设是方程存在实数根x0为()
A.整数
B.奇数或偶数
C.正整数或负整数
D.自然数或负整数答案:A39.如图:在长方体ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2,E,F分别是线段AB,BC上的点,且EB=FB=1.
(1)求二面角C-DE-C1的大小;
(2)求异面直线EC1与FD1所成角的大小;
(3)求异面直线EC1与FD1之间的距离.答案:(1)以A为原点AB,AD,AA1分别为x轴、y轴、z轴的正向建立空间直角坐标系,则有D(0,3,0),D1(0,3,2),E(3,0,0),F(4,1,0),C1(4,3,2).(1分)于是DE=(3,-3,0),EC1=(1,3,2),FD1=(-4,2,2)(3分)设向量n=(x,y,z)与平面C1DE垂直,则有n⊥D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年低压电机采购合同范本
- 2024年承接竹林砍伐合同范本
- 贵州省黔东南苗族侗族自治州剑河县第四中学2024-2025学年九年级上学期11月期中物理试题(含答案)
- 中医护理培训
- 产前的观察与护理
- 中医营养护理
- 冠心病人居家管理方案
- 2024装修施工合同范本标准
- 2024客户合同遗失证明
- 2024装修合同维权范文
- 经营异常授权委托书范本
- 工程投入的劳动力、主要物资、施工机械设备进场计划
- 大班劳动教育课教案反思总结(3篇模板)
- 机械原理智慧树知到期末考试答案章节答案2024年兰州理工大学
- 肿瘤化疗导致的中性粒细胞减少诊治中国专家共识(2023版)解读
- 走进故宫 知到智慧树网课答案
- 《新能源汽车概论》课件-6新能源汽车空调系统结构及工作原理
- 安川g7变频器说明书-安川变频器g7面板操作说明
- 国开2024年《法律基础》形考作业1-4答案
- 《剧院魅影:25周年纪念演出》完整中英文对照剧本
- 蒋诗萌小品《谁杀死了周日》台词完整版
评论
0/150
提交评论