版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年广东生态工程职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.正方体ABCD-A1B1C1D1的棱长为2,MN是它的内切球的一条弦(把球面上任意两点之间的线段称为球的弦),P为正方体表面上的动点,当弦MN最长时.PM•PN的最大值为______.答案:设点O是此正方体的内切球的球心,半径R=1.∵PM•PN≤|PM|
|PN|,∴当点P,M,N三点共线时,PM•PN取得最大值.此时PM•PN≤(PO-MO)•(PO+ON),而MO=ON,∴PM•PN≤PO2-R2=PO2-1,当且仅当点P为正方体的一个顶点时上式取得最大值,∴(PM•PN)max=(232)2-1=2.故为2.2.设函数f(x)=(2a-1)x+b是R上的减函数,则a的范围为______.答案:∵f(x)=(2a-1)x+b是R上的减函数,∴2a-1<0,解得a<12.故为:a<12.3.小李在一旅游景区附近租下一个小店面卖纪念品和T恤,由于经营条件限制,他最多进50件T恤和30件纪念品,他至少需要T恤和纪念品40件才能维持经营,已知进货价为T恤每件36元,纪念品每件50元,现在他有2400元可进货,假设每件T恤的利润是18元,每件纪念品的利润是20元,问怎样进货才能使他的利润最大,最大利润为多少?答案:设进T恤x件,纪念品y件,可得利润为z元,由题意得x、y满足的约束条件为:
0≤x≤50
0≤y≤30
x+y≥4036x+48y≤2400,且x、y∈N*目标函数z=18x+20y约束条件的可行域如图所示:五边形ABCDE的各个顶点坐标分别为:A(40,0),B(50,0),C(50,252),D(803,30),E(10,30),当直线l:z=18x+20y经过C(50,252)时取最大值,∵x,y必为整数,∴当x=50,y=12时,z取最大值即进50件T恤,12件纪念品时,可获最大利润,最大利润为1140元.4.已知一种材料的最佳加入量在110g到210g之间.若用0.618法安排试验,则第一次试点的加入量可以是(
)g。答案:171.8或148.25.直线l经过点A(2,-1)和点B(-1,5),其斜率为()
A.-2
B.2
C.-3
D.3答案:A6.已知四边形ABCD中,AB=12DC,且|AD|=|BC|,则四边形ABCD的形状是______.答案:∵AB=12DC,∴AB∥DC,且|AB|=12|DC|,即线段AB平行于线段CD,且线段AB长度是线段CD长度的一半∴四边形ABCD为以AB为上底、CD为下底的梯形,又∵|AD|=|BC|,∴梯形ABCD的两腰相等,因此四边形ABCD是等腰梯形.故为:等腰梯形7.某工厂生产的产品,用速度恒定的传送带将产品送入包装车间之前,质检员每隔3分钟从传送带上是特定位置取一件产品进行检测,这种抽样方法是()
A.简单随机抽样
B.系统抽样
C.分层抽样
D.其它抽样方法答案:B8.平面向量a与b的夹角为,若a=(2,0),|b|=1,则|a+2b|=()
A.
B.2
C.4
D.12答案:B9.甲射击运动员击中目标为事件A,乙射击运动员击中目标为事件B,则事件A,B为()
A.互斥事件
B.独立事件
C.对立事件
D.不相互独立事件答案:B10.设0<a<1,m=loga(a2+1),n=loga(a+1),p=loga(2a),则m,n,p的大小关系是()A.n>m>pB.m>p>nC.m>n>pD.p>m>n答案:取a=0.5,则a2+1、a+1、2a的大小分别为:1.25,1.5,1,又因为0<a<1时,y=logax为减函数,所以p>m>n故选D11.如图,花园中间是喷水池,喷水池周围的A、B、C、D区域种植草皮,要求相邻的区域种不同颜色的草皮,现有4种不同颜色的草皮可供选用,则共有______种不同的种植方法(以数字作答).答案:若AD相同,有4×(3+3×2)种种植方法,若AD不同,有4×3×(2+2×1)种种植方法∴共有4×(3+3×2)+4×3×(2+2×1)=36+48=84种不同方法.故为84.12.已知椭圆的焦点为F1,F2,A在椭圆上,B在F1A的延长线上,且|AB|=|AF2|,则B点的轨迹形状为()
A.椭圆
B.双曲线
C.圆
D.两条平行线答案:C13.设,,,则P,Q,R的大小顺序是(
)
A.P>Q>R
B.P>R>Q
C.Q>P>R
D.Q>R>P答案:B14.若向量=(1,λ,2),=(-2,1,1),,夹角的余弦值为,则λ等于()
A.1
B.-1
C.±1
D.2答案:A15.根据下列条件,求圆的方程:
(1)过点A(1,1),B(-1,3)且面积最小;
(2)圆心在直线2x-y-7=0上且与y轴交于点A(0,-4),B(0,-2).答案:(1)过A、B两点且面积最小的圆就是以线段AB为直径的圆,∴圆心坐标为(0,2),半径r=12|AB|=12(-1+1)2+(1-3)2=12×8=2,∴所求圆的方程为x2+(y-2)2=2;(2)由圆与y轴交于点A(0,-4),B(0,-2)可知,圆心在直线y=-3上,由2x-y-7=0y=-3,解得x=2y=-3,∴圆心坐标为(2,-3),半径r=5,∴所求圆的方程为(x-2)2+(y+3)2=5.16.设直线的参数方程是x=2+12ty=3+32t,那么它的斜截式方程是______.答案:∵直线的参数方程为x=2+12ty=3+32t(t为参数),消去参数化为普通方程可得y-3=3(x-2),那么它的斜截式方程是y=3x+3-23.故为:y=3x+3-23.17.根据给出的空间几何体的三视图,用斜二侧画法画出它的直观图.答案:画法:(1)画轴如下图,画x轴、y轴、z轴,三轴相交于点O,使∠xOy=45°,∠xOz=90°.(2)画圆台的两底面画出底面⊙O假设交x轴于A、B两点,在z轴上截取O′,使OO′等于三视图中相应高度,过O′作Ox的平行线O′x′,Oy的平行线O′y′利用O′x′与O′y′画出底面⊙O′,设⊙O′交x′轴于A′、B′两点.(3)成图连接A′A、B′B,去掉辅助线,将被遮挡的部分要改为虚线,即得到给出三视图所表示的直观图.18.随机变量ξ的分布列为k=1、2、3、4,c为常数,则P(<ξ<)的值为()
A.
B.
C.
D.答案:B19.已知矩阵M=2a21,其中a∈R,若点P(1,-2)在矩阵M的变换下得到点P'(-4,0)
(1)求实数a的值;
(2)求矩阵M的特征值及其对应的特征向量.答案:(1)由2a211-2=-40,∴2-2a=-4⇒a=3.(2)由(1)知M=2321,则矩阵M的特征多项式为f(λ)=.λ-2-3-2λ-1.=(λ-2)(λ-1)-6=λ2-3λ-4令f(λ)=0,得矩阵M的特征值为-1与4.当λ=-1时,(λ-2)x-3y=0-2x+(λ-1)y=0⇒x+y=0∴矩阵M的属于特征值-1的一个特征向量为1-1;当λ=4时,(λ-2)x-3y=0-2x+(λ-1)y=0⇒2x-3y=0∴矩阵M的属于特征值4的一个特征向量为32.20.命题“每一个素数都是奇数”的否定是______.答案:原命题“每一个素数都是奇数”是一个全称命题它的否定是一个特称命题,即“有的素数不是奇数”故为:有的素数不是奇数21.是x1,x2,…,x100的平均数,a是x1,x2,…,x40的平均数,b是x41,x42,…,x100的平均数,则下列各式正确的是()
A.=
B=
C.=a+b
D.答案:A22.有5组(x,y)的统计数据:(1,2),(2,4),(4,5),(3,10),(10,12),要使剩下的数据具有较强的相关关系,应去掉的一组数据是()
A.(1,2)
B.(4,5)
C.(3,10)
D.(10,12)答案:C23.甲、乙两人投篮,投中的概率分别为0.6,0.7,若两人各投2次,则两人都投中1次的概率为______.答案:两人都投中1次的概率为C210.6×0.4×C210.7×0.3=0.2016故为:0.201624.在极坐标系中,曲线p=4cos(θ-π3)上任意两点间的距离的最大值为______.答案:将原极坐标方程p=4cos(θ-π3),化为:ρ=2cosθ+23sinθ,∴ρ2=2ρcosθ+23ρsinθ,化成直角坐标方程为:x2+y2-2x-23y=0,是一个半径为2圆.圆上两点间的距离的最大值即为圆的直径,故填:4.25.在平面几何中,四边形的分类关系可用以下框图描述:
则在①中应填入______;在②中应填入______.答案:由题意知①对应的四边形是一个有一组邻边相等的平行四边形,∴这里是一个菱形,②处的图形是一个有一条腰和底边垂直的梯形,∴②处是一个直角梯形,故为:菱形;直角梯形.26.在用样本频率估计总体分布的过程中,下列说法正确的是()A.总体容量越大,估计越精确B.总体容量越小,估计越精确C.样本容量越大,估计越精确D.样本容量越小,估计越精确答案:∵用样本频率估计总体分布的过程中,估计的是否准确与总体的数量无关,只与样本容量在总体中所占的比例有关,∴样本容量越大,估计的月准确,故选C.27.在复平面上,设点A,B,C对应的复数分别为i,1,4+2i,过A、B、C作平行四边形ABCD,则平行四边形对角线BD的长为______.答案:∵点A,B,C对应的复数分别为i,1,4+2i∴A(0,1),B(1,0),C(4,2)设D(x,y)∴AD=BC=(3,2)∴D(3,3)∴对角线BD的长度是4+9=13故为:1328.如图,已知AB是⊙O的直径,AB⊥CD于E,切线BF交AD的延长线于F,若AB=10,CD=8,则切线BF的长是
______.答案:连接OD,AB⊥CD于E,根据垂径定理得到DE=4,在直角△ODE中,根据勾股定理得到OE=3,因而AE=8,易证△ABF∽△AED,得到DEBF=AEAB=810,解得BF=5.29.为求方程x5-1=0的虚根,可以把原方程变形为(x-1)(x2+ax+1)(x2+bx+1)=0,由此可得原方程的一个虚根为______.答案:由题可知(x-1)(x2+ax+1)(x2+bx+1)=(x-1)[x4+(a+b)x3+(2+ab)x2+(a+b)x+1]比较系数可得a+b=1ab+2=1,∴a=1+52,b=1-52∴原方程的一个虚根为-1-5±10-25i4,-1+5±10+25i4中的一个故为:-1-5+10-25i4.30.抛物线顶点在坐标原点,以y轴为对称轴,过焦点且与y轴垂直的弦长为16,则抛物线方程为______.答案:∵过焦点且与对称轴y轴垂直的弦长等于p的2倍.∴所求抛物线方程为x2=±16y.故为:x2=±16y.31.圆的极坐标方程是ρ=2cosθ+2sinθ,则其圆心的极坐标是()
A.(2,)
B.(2,)
C.(1,)
D.(1,)答案:A32.已知(2x+1)3的展开式中,二项式系数和为a,各项系数和为b,则a+b=______.(用数字表示)答案:由题意可得(2x+1)3的展开式中,二项式系数和为a=23=8令x=1可得各项系数和为b=(2+1)3=27∴a+b=35故为:3533.
选修1:几何证明选讲
如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD,求证:
(1)l是⊙O的切线;
(2)PB平分∠ABD.答案:证明:(1)连接OP,因为AC⊥l,BD⊥l,所以AC∥BD.又OA=OB,PC=PD,所以OP∥BD,从而OP⊥l.因为P在⊙O上,所以l是⊙O的切线.(2)连接AP,因为l是⊙O的切线,所以∠BPD=∠BAP.又∠BPD+∠PBD=90°,∠BAP+∠PBA=90°,所以∠PBA=∠PBD,即PB平分∠ABD.34.若直线x+y=m与圆x=mcosφy=msinφ(φ为参数,m>0)相切,则m为
______.答案:圆x=mcosφy=msinφ的圆心为(0,0),半径为m∵直线x+y=m与圆相切,∴d=r即|m|2=m,解得m=2故为:235.圆心在x轴上,且过两点A(1,4),B(3,2)的圆的方程为______.答案:设圆心坐标为(m,0),半径为r,则圆的方程为(x-m)2+y2=r2,∵圆经过两点A(1,4)、B(3,2)∴(1-m)2+42=r2(3-m)2+22=r2解得:m=-1,r2=20∴圆的方程为(x+1)2+y2=20故为:(x+1)2+y2=2036.已知x、y的取值如下表:x0134y2.24.34.86.7从散点图分析,y与x线性相关,且回归方程为y=0.95x+a,则a=______.答案:点(.x,.y)在回归直线上,计算得.x=2,.y=4.5;代入得a=2.6;故为2.6.37.设F1,F2分别是椭圆x24+y2=1的左、右焦点,P是第一象限内该椭圆上的一点,且P、F1、F2三点构成一直角三角形,则点P的纵坐标为______.答案:由题意,P是第一象限内该椭圆上的一点,且P、F1、F2三点构成一直角三角形,故可分为两类:①当∠P为直角时,设P的纵坐标为y,则F1,F2分别是椭圆x24+y2=1的左、右焦点∴|PF1|+|PF2|=4,|F1F2|=23∵∠P为直角,∴|PF1|2+|PF2|2=|F1F2|2,∵|PF1|+|PF2|=4,|F1F2|=23∴|PF1||PF2|=2∴S△PF1F2=12|PF1||PF2|=1∵S△PF1F2=12|F1F2|×y=3y∴3y=1∴y=33②当∠PF2F1为直角时,P的横坐标为3设P的纵坐标为y(y>0),则(3)24+y2=1,∴y=12故为:33
或1238.直线l过点(-3,1),且它的一个方向向量n=(2,-3),则直线l的方程为______.答案:设直线l的另一个方向向量为a=(1,k),其中k是直线的斜率可得n=(2,-3)与a=(1,k)互相平行∴12=k-3⇒k=-32所以直线l的点斜式方程为:y-1=-32(x+3)化成一般式:3x+2y+7=0故为:3x+2y+7=039.方程x2+(m-2)x+5-m=0的两根都大于2,则m的取值范围是()
A.(-5,-4]
B.(-∞,-4]
C.(-∞,-2]
D.(-∞,-5)∪(-5,-4]答案:A40.已知命题p、q,若命题“p∨q”与命题“¬p”都是真命题,则()A.命题q一定是真命题B.命题q不一定是真命题C.命题p不一定是假命题D.命题p与命题q的真值相等答案:∵命题“¬p”与命题“p∨q”都是真命题,∴命题p为假命题,q为真命题.故选A.41.用0,1,2,3组成没有重复数字的四位数,其中奇数有()
A.8个
B.10个
C.18个
D.24个答案:A42.已知F1(-8,3),F2(2,3),动点P满足PF1-PF2=10,则点P的轨迹是______.答案:由于两点间的距离|F1F2|=10,所以满足条件|PF1|-|PF2|=10的点P的轨迹应是一条射线.故为一条射线.43.若函数y=f(x)的定义域是[2,4],则y=f(log12x)的定义域是()A.[12,1]B.[4,16]C.[116,14]D.[2,4]答案:∵y=f(log12x),令log12x=t,∴y=f(log12x)=f(t),∵函数y=f(x)的定义域是[2,4],∴y=f(t)的定义域也为[2,4],即2≤t≤4,∴有2≤log12x≤4,解得:116≤x≤14,∵函数的定义域即解析式中自变量的取值范围,∴y=f(log12x)的定义域为116≤x≤14,即:[116,14].故选C.44.在平面直角坐标系中,经伸缩变换后曲线方程变换为椭圆方程,此伸缩变换公式是(
)A.B.C.D.答案:B解析:解:因为在平面直角坐标系中,经伸缩变换后曲线方程变换为椭圆方程,设变换为,将其代入方程中,得到x,y的关系式,对应相等可知,选B45.点P(2,1)到直线
3x+4y+10=0的距离为()A.1B.2C.3D.4答案:由P(2,1),直线方程为3x+4y+10=0,则P到直线的距离d=|6+4+10|32+42=4.故选D46.定义:若函数f(x)对于其定义域内的某一数x0,有f(x0)=x0,则称x0是f(x)的一个不动点。
已知函数f(x)=ax2+(b+1)x+b-1(a≠0)。
(1)当a=1,b=-2时,求函数f(x)的不动点;
(2)若对任意的实数b,函数f(x)恒有两个不动点,求a的取值范围;
(3)在(2)的条件下,若y=f(x)图象上两个点A、B的横坐标是函数f(x)的不动点,且A、B的中点C在函数g(x)=-x+的图象上,求b的最小值。
(参考公式:A(x1,y1),B(x2,y2)的中点坐标为)
答案:解:(1)f(x)=x2-x-3,由x2-x-3=0,解得x=3或x=-1,所以所求的不动点为-1或3。(2)令ax2+(b+1)x+b+1=x,则ax2+bx+b-1=0,①由题意,方程①恒由两个不等实根,所以△=b2-4a(b-1)>0,即b2-4ab+4a>0对任意的b∈R恒成立,则△′=16a2-16a<0,故0(3)依题意,设,则AB中点C的坐标为,又AB的中点在直线上,∴,∴,又x1,x2是方程①的两个根,∴,∴,,∴,∴当时,bmin=-1。</a<1。47.已知两条直线a1x+b1y+1=0和a2x+b2y+1=0都过点A(2,3),则过两点P1(a1,b1),P2(a2,b2)的直线方程为______.答案:∵A(2,3)是直线a1x+b1y+1=0和a2x+b2y+1=0的公共点,∴2a1+3b1+1=0,且2a2+3b2+1=0,即两点P1(a1,b1),P2(a2,b2)的坐标都适合方程2x+3y+1=0,∴两点(a1,b1)和(a2,b2)都在同一条直线2x+3y+1=0上,故点(a1,b1)和(a2,b2)所确定的直线方程是2x+3y+1=0,故为:2x+3y+1=0.48.一名同学先后投掷一枚骰子两次,第一次向上的点数记为x,第二次向上的点数记为y,在直角坐标系xOy中,以(x,y)为坐标的点落在直线2x+y=8上的概率为()A.16B.112C.536D.19答案:由题意知本题是一个古典概型,∵试验发生包含的事件是先后掷两次骰子,共有6×6=36种结果,满足条件的事件是(x,y)为坐标的点落在直线2x+y=8上,当x=1,y=6;x=2,y=4;x=3,y=2,共有3种结果,∴根据古典概型的概率公式得到P=336=112,故选B.49.已知x,y之间的一组数据:
x0123y1357则y与x的回归方程必经过()A.(2,2)B.(1,3)C.(1.5,4)D.(2,5)答案:∵.x=0+1+2+34=1.5,.y=1+3+5+74=4∴这组数据的样本中心点是(1.5,4)根据线性回归方程一定过样本中心点,∴线性回归方程y=a+bx所表示的直线必经过点(1.5,4)故选C50.袋中装着标有数字1,2,3,4,5的小球各2个,现从袋中任意取出3个小球,假设每个小球被取出的可能性都相等.
(Ⅰ)求取出的3个小球上的数字分别为1,2,3的概率;
(Ⅱ)求取出的3个小球上的数字恰有2个相同的概率;
(Ⅲ)用X表示取出的3个小球上的最大数字,求P(X≥4)的值.答案:(I)记“取出的3个小球上的数字分别为1,2,3”的事件记为A,则P(A)=C12C12C12C310=8120=115;(Ⅱ)记“取出的3个小球上的数字恰有2个相同”的事件记为A,则P(B)=C15C18C310=40120=13;(Ⅲ)用X表示取出的3个小球上的最大数字,则X≥4包含取出的3个小球上的最大数字为4或5两种情况,当取出的3个小球上的最大数字为4时,P(X=4)=C12C26+C22C16C310=36120=310;当取出的3个小球上的最大数字为5时,P(X=5)=C12C28+C22C18C310=64120=815故P(X≥4)=56.第2卷一.综合题(共50题)1.定义xn+1yn+1=1011xnyn,n∈N*为向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一个矩阵变换,其中O是坐标原点.已知OP1=(1,0),则OP2010的坐标为______.答案:由题意,xn+1=xnyn+1=xn+yn∴向量的横坐标不变,纵坐标构成以0为首项,1为公差的等差数列∴OP2010的坐标为(1,2009)故为(1,2009)2.设O是正方形ABCD的中心,向量,,,是(
)
A.平行向量
B.有相同终点的向量
C.相等向量
D.模相等的向量答案:D3.已知f(10x)=x,则f(5)=______.答案:令10x=5可得x=lg5所以f(5)=f(10lg5)=lg5故为:lg54.在边长为1的正方形中,有一个封闭曲线围成的阴影区域,在正方形中随机的撒入100粒豆子,恰有60粒落在阴影区域内,那么阴影区域的面积为______.
答案:设阴影部分的面积为x,由概率的几何概型知,则60100=x1,解得x=35.故为:35.5.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到右侧的平面图形,则标“△”的面的方位()
A.南
B.北
C.西
D.下
答案:B6.下面哪个不是算法的特征()A.抽象性B.精确性C.有穷性D.唯一性答案:根据算法的概念,可知算法具有抽象性、精确性、有穷性等,同一问题,可以有不同的算法,故选D.7.已知斜二测画法得到的直观图△A′B′C′是正三角形,画出原三角形的图形.答案:由斜二测法知:B′C′不变,即BC与B′C′重合,O′A′由倾斜45°变为与x轴垂直,并且O′A′的长度变为原来的2倍,得到OA,由此得到原三角形的图形ABC.8.若定义运算a⊕b=b,a<ba,a≥b则函数f(x)=2x⊕(12)x的值域为______(用区间表示).答案:由题意画出f(x)=2x?(12)x的图象(实线部分),由图可知f(x)的值域为[1,+∞).故为:[1,+∞).9.若向量=(2,-3,1),=(2,0,3),=(0,2,2),则(+)=()
A.4
B.15
C.7
D.3答案:D10.观察下列各式:1=0+1,2+3+4=1+8,5+6+7+8+9=8+27,…,猜想第5个等式应为______.答案:由题意,(i)等式左边为一段连续自然数之和,且最后一个和数恰为各等式序号的立方,最前一个和数恰为等式序号减1平方加1;(ii)等式右边均为两数立方和,且也与等式序号具有明显的相关性.故猜想第5个等式应为17+18+19+20+21+22+23+24+25=64+125故为:17+18+19+20+21+22+23+24+25=64+12511.方程x2+y2=1(xy<0)的曲线形状是()
A.
B.
C.
D.
答案:C12.△ABC内接于以O为圆心的圆,且∠AOB=60°.则∠C=______.答案:∵△ABC内接于以O为圆心的圆,∴∠C=12∠AOB,∵∠AOB=60°∴∠C=12×60°=30°故为30°.13.设α和β为不重合的两个平面,给出下列命题:
(1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;
(2)若α外一条直线l与α内的一条直线平行,则l和α平行;
(3)设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;
(4)直线l与α垂直的充分必要条件是l与α内的两条直线垂直.
上面命题,真命题的序号是______(写出所有真命题的序号)答案:由面面平行的判定定理可知,(1)正确.由线面平行的判定定理可知,(2)正确.对于(3)来说,α内直线只垂直于α和β的交线l,得不到其是β的垂线,故也得不出α⊥β.对于(4)来说,l只有和α内的两条相交直线垂直,才能得到l⊥α.也就是说当l垂直于α内的两条平行直线的话,l不一定垂直于α.14.若不等式logax>sin2x(a>0,a≠1)对任意x∈(0,π4)都成立,则a的取值范围是()A.(0,π4)B.(π4,1)C.(π4,π2)D.(0,1)答案:∵当x∈(0,π4)时,函数y=logax的图象要恒在函数y=sin2x图象的上方∴0<a<1如右图所示当y=logax的图象过点(π4,1)时,a=π4,然后它只能向右旋转,此时a在增大,但是不能大于1故选B.15.函数f(x)=x2+2的单调递增区间为
______.答案:如图所示:函数的递增区间是:[0,+∞)故为:[0,+∞)16.在平面几何里,我们知道,正三角形的外接圆和内切圆的半径之比是2:1。拓展到空间,研究正四面体(四个面均为全等的正三角形的四面体)的外接球和内切球的半径关系,可以得出的正确结论是:正四面体的外接球和内切球的半径之比是(
)。答案:3:117.叙述并证明勾股定理.答案:证明:如图左边的正方形是由1个边长为a的正方形和1个边长为b的正方形以及4个直角边分别为a、b,斜边为c的直角三角形拼成的.右边的正方形是由1个边长为c的正方形和4个直角边分别为a、b,斜边为c的直角三角形拼成的.因为这两个正方形的面积相等(边长都是a+b),所以可以列出等式a2+b2+4×12ab=c2+4×12ab,化简得a2+b2=c2.下面是一个错误证法:勾股定理:直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理证明:作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP∥BC,交AC于点P.过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N.∵∠BCA=90°,QP∥BC,∴∠MPC=90°,∵BM⊥PQ,∴∠BMP=90°,∴BCPM是一个矩形,即∠MBC=90°.∵∠QBM+∠MBA=∠QBA=90°,∠ABC+∠MBA=∠MBC=90°,∴∠QBM=∠ABC,又∵∠BMP=90°,∠BCA=90°,BQ=BA=c,∴Rt△BMQ≌Rt△BCA.同理可证Rt△QNF≌Rt△AEF.即a2+b2=c218.当a>0时,不等式组的解集为(
)。答案:当a>时为;当a=时为{};当0<a<时为[a,1-a]19.某工厂生产的产品,用速度恒定的传送带将产品送入包装车间之前,质检员每隔3分钟从传送带上是特定位置取一件产品进行检测,这种抽样方法是()
A.简单随机抽样
B.系统抽样
C.分层抽样
D.其它抽样方法答案:B20.用样本估计总体,下列说法正确的是()A.样本的结果就是总体的结果B.样本容量越大,估计就越精确C.样本容量越小,估计就越精确D.样本的方差可以近似地反映总体的平均状态答案:用样本估计总体时,样本容量越大,估计就越精确,样本的平均值可以近似地反映总体的平均状态,样本的标准差可以近似地反映总体的波动状态,数据的方差越大,说明数据越不稳定,样本的结果可以粗略的估计总体的结果,但不就是总体的结果.故选B.21.已知双曲线的两条准线将两焦点间的线段三等分,则双曲线的离心率是______.答案:由题意可得2c×13=2a2c,∴3a2=c2,∴e=ca=3,故为:3.22.用反证法证明命题:“a,b,c,d∈R,a+b=1,c+d=1,且ac+bd>1,则a,b,c,d中至少有一个负数”时的假设为()
A.a,b,c,d中至少有一个正数
B.a,b,c,d全为正数
C.a,b,c,d全都大于等于0
D.a,b,c,d中至多有一个负数答案:C23.设空间两个不同的单位向量
a=(x1,y1,0),
b=(x2,y2,0)与向量
c=(1,1,1)的夹角都等于45°.
(1)求x1+y1和x1y1的值;
(2)求<
a,
b>的大小.答案:(1)∵单位向量a=(x1,y1,0)与向量c=(1,1,1)的夹角等于45°∴|a|=x21+y21=1,cos45°=a?
c|a|?
|c|=13(x1+y1)=22∴x1+y1=62,x1?y1=-14(2)同理可知x2+y2=22,x2?y2=-14∴x1?x2=-14,y1?y2=-14cos<a,b>=a?b|a|?|b|=x1?x2+y1?y2=-12∴<a,b>=120°24.在空间中,有如下命题:
①互相平行的两条直线在同一个平面内的射影必然是互相平行的两条直线;
②若平面α∥平面β,则平面α内任意一条直线m∥平面β;
③若平面α与平面β的交线为m,平面α内的直线n⊥直线m,则直线n⊥平面β.
其中正确命题的个数为()个.
A.0
B.1
C.2
D.3答案:B25.圆心在原点且圆周被直线3x+4y+15=0分成1:2两部分的圆的方程为
______.答案:如图,因为圆周被直线3x+4y+15=0分成1:2两部分,所以∠AOB=120°.而圆心到直线3x+4y+15=0的距离d=1532+42=3,在△AOB中,可求得OA=6.所以所求圆的方程为x2+y2=36.故为:x2+y2=3626.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X、Y,则log2XY=1的概率为()A.16B.536C.112D.12答案:∵log2XY=1∴Y=2X,满足条件的X、Y有3对而骰子朝上的点数X、Y共有36对∴概率为336=112故选C.27.如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联,连线标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点B向结点A传递信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为()
A.26
B.24
C.20
D.19
答案:D28.直线l过点(-3,1),且它的一个方向向量n=(2,-3),则直线l的方程为______.答案:设直线l的另一个方向向量为a=(1,k),其中k是直线的斜率可得n=(2,-3)与a=(1,k)互相平行∴12=k-3⇒k=-32所以直线l的点斜式方程为:y-1=-32(x+3)化成一般式:3x+2y+7=0故为:3x+2y+7=029.以A(1,5)、B(5,1)、C(-9,-9)为顶点的三角形是()
A.等边三角形
B.等腰三角形
C.不等边三角形
D.直角三角形答案:B30.某简单几何体的三视图如图所示,其正视图.侧视图.俯视图均为直角三角形,面积分别是1,2,4,则这个几何体的体积为()A.83B.43C.8D.4答案:由三视图知几何体是一个三棱锥,设出三棱锥的三条两两垂直的棱分别是x,y,z∴xy=2
①xz=4
②yz=8
③由①②得z=2y
④∴y=2∴以y为高的底面面积是2,∴三棱锥的体积是13×2×2=43故选B.31.已知a、b均为单位向量,它们的夹角为60°,那么|a+3b|=()
A.
B.
C.
D.4答案:C32.双曲线(n>1)的两焦点为F1、、F2,P在双曲线上,且满足|PF1|+|PF2|=2,则△P
F1F2的面积为()
A.
B.1
C.2
D.4答案:B33.已知G是△ABC的重心,过G的一条直线交AB、AC两点分别于E、F,且有AE=λAB,AF=μAC,则1λ+1μ=______.答案:∵G是△ABC的重心∴取过G平行BC的直线EF∵AE=λAB,AF=μAC∴λ=23,μ=23∴1λ+1μ=32+32=3故为334.设复数z=cosθ+sinθi,0≤θ≤π,则|z+1|的最大值为______.答案:复数z=cosθ+sinθi,0≤θ≤π,则|z+1|=|cosθ+1+isinθ|=(1+cosθ)2+sin2θ=2+2cosθ≤2.故为:2.35.已知x,y,z满足(x-3)2+(y-4)2+z2=2,那么x2+y2+z2的最小值是______.答案:由题意可得P(x,y,z),在以M(3,4,0)为球心,2为半径的球面上,x2+y2+z2表示原点与点P的距离的平方,显然当O,P,M共线且P在O,M之间时,|OP|最小,此时|OP|=|OM|-2=32+42-2=52,所以|OP|2=27-102.故为:27-102.36.过抛物线y=ax2(a>0)的焦点F作一直线交抛物线交于P、Q两点,若线段PF、FQ的长分别为p、q,则1p+1q=______.答案:设PQ的斜率k=0,因抛物线焦点坐标为(0,14a),把直线方程y=14a
代入抛物线方程得x=±12a,∴PF=FQ=12a,从而
1p+1q=2a+2a=4a,故为:4a.37.x2+(m-3)x+m=0
一个根大于1,一个根小于1,m的范围是______.答案:设f(x)=x2+(m-3)x+m,则∵x2+(m-3)x+m=0一个根大于1,一个根小于1,∴f(1)<0∴1+(m-3)+m<0∴m<1故为m<1.38.设求证答案:证明略解析:左边-右边===
=
∴原不等式成立。证法二:左边>0,右边>0。∴原不等式成立。39.若已知中心在坐标原点的椭圆过点(1,233),且它的一条准线方程为x=3,则该椭圆的方程为______.答案:设椭圆的方程是x2a2+y2b2=1,由题设,中心在坐标原点的椭圆过点(1,233),且它的一条准线方程为x=3,∴1a2+43b2=1,a2c=3,又a2=c2+b2三式联立可以解得a=3,b=2,c=1或a=7,b=143,c=73故该椭圆的方程为x23+y22=1或x27+y2149=1故应填x23+y22=1或x27+y2149=140.用反证法证明命题“三角形的内角中至多有一个是钝角”时,第一步是:“假设______.答案:根据用反证法证明数学命题的方法和步骤,应先假设命题的否定成立,而命题“三角形的内角中至多有一个是钝角”的否定为:“三角形的内角中至少有两个钝角”,故为“三角形的内角中至少有两个钝角”.41.某处有供水龙头5个,调查表明每个水龙头被打开的可能性为,随机变量ξ表示同时被打开的水龙头的个数,则P(ξ=3)为A.0.0081B.0.0729C.0.0525D.0.0092答案:A解析:本题考查n次独立重复试验中,恰好发生k次的概率.对5个水龙头的处理可视为做5次试验,每次试验有2种可能结果:打开或未打开,相应的概率为0.1或1-0.1="0.9."根据题意ξ~B(5,0.1),从而P(ξ=3)=(0.1)3(0.9)2=0.0081.42.若A∩B=A∪B,则A______B.答案:设有集合W=A∪B=B∩C,根据并集的性质,W=A∪B?A?W,B?W,根据交集的性质,W=A∩B?W?A,W?B由集合子集的性质,A=B=W,故为:=.43.已知O是△ABC所在平面内一点,D为BC边中点,且,那么(
)
A.
B.
C.
D.2
答案:A44.200辆汽车经过某一雷达地区,时速频率分布直方图如图所示,则时速不低于60km/h的汽车数量为
______辆.答案:时速不低于60km/h的汽车的频率为(0.028+0.01)×10=0.38∴时速不低于60km/h的汽车数量为200×0.38=76故为:7645.下列选项中元素的全体可以组成集合的是()A.2013年1月风度中学高一级高个子学生B.校园中长的高大的树木C.2013年1月风度中学高一级在校学生D.学校篮球水平较高的学生答案:因为集合中元素具有:确定性、互异性、无序性.所以A、B、D都不是集合,元素不确定;故选C.46.直线y=3的一个单位法向量是______.答案:直线y=3的方向向量是(a,0)(a≠0),不妨取(1,0)设直线y=3的法向量为n=(x,y)∴(x,y)?(1,0)=0∴x=0∴直线y=3的一个单位法向量是(0,1)故为:(0,1)47.已知抛物线C1:x2=2py(p>0)上纵坐标为p的点到其焦点的距离为3.
(Ⅰ)求抛物线C1的方程;
(Ⅱ)过点P(0,-2)的直线交抛物线C1于A,B两点,设抛物线C1在点A,B处的切线交于点M,
(ⅰ)求点M的轨迹C2的方程;
(ⅱ)若点Q为(ⅰ)中曲线C2上的动点,当直线AQ,BQ,PQ的斜率kAQ,kBQ,kPQ均存在时,试判断kPQkAQ+kPQkBQ是否为常数?若是,求出这个常数;若不是,请说明理由.答案:(Ⅰ)由题意得p+p2=3,则p=2,…(3分)所以抛物线C1的方程为x2=4y.
…(5分)(Ⅱ)(ⅰ)设过点P(0,-2)的直线方程为y=kx-2,A(x1,y1),B(x2,y2),由y=kx-2x2=4y得x2-4kx+8=0.由△>0,得k<-2或k>2,x1+x2=4k,x1x2=8.…(7分)抛物线C1在点A,B处的切线方程分别为y-y1=x12(x-x1),y-y2=x22(x-x2),即y=x12x-x214,y=x22x-x224,由y=x12x-x214y=x22x-x224得x=x1+x22=2ky=x1x24=2.所以点M的轨迹C2的方程为y=2
(x<-22或x>22).…(10分)(ⅱ)设Q(m,2)(|m|>22),则kPQ=4m,kAQ=y1-2x1-m,kBQ=y2-2x2-m.…(11分)所以kPQkAQ+kPQkBQ=4m(1kAQ+1kBQ)=4m(x1-my1-2+x2-my2-2)…(12分)=4m[(x1-m)(y2-2)+(x2-m)(y1-2)(y1-2)(y2-2)]=4m[2kx1x2-(mk+4)(x1+x2)+8mk2x1x2-4k(x1+x2)+16]=4m[16k-(mk+4)•4k+8m8k2-4k•4k+16]=4m[8m-4mk216-8k2]=4m[4m(2-k2)8(2-k2)]=2,即kPQkAQ+kPQkBQ为常数2.
…(15分)48.满足{1,2}∪A={1,2,3}的集合A的个数为______.答案:由{1,2}∪A={1,2,3},所以A={3},或{1,3},或{2,3},或{1,2,3}.所以集合A的个数为4.49.在极坐标中,由三条曲线θ=0,θ=,ρcosθ+ρsinθ=1围成的图形的面积是()
A.
B.
C.
D.答案:A50.解不等式|2x-1|<|x|+1.答案:根据题意,对x分3种情况讨论:①当x<0时,原不等式可化为-2x+1<-x+1,解得x>0,又x<0,则x不存在,此时,不等式的解集为∅.②当0≤x<12时,原不等式可化为-2x+1<x+1,解得x>0,又0≤x<12,此时其解集为{x|0<x<12}.③当x≥12
时,原不等式可化为2x-1<x+1,解得12≤x<2,又由x≥12,此时其解集为{x|12≤x<2},∅∪{x|0<x<12
}∪{x|12≤x<2
}={x|0<x<2};综上,原不等式的解集为{x|0<x<2}.第3卷一.综合题(共50题)1.已知直线3x+4y-3=0与直线6x+my+14=0平行,则它们之间的距离是______.答案:直线3x+4y-3=0即6x+8y-6=0,它直线6x+my+14=0平行,∴m=8,则它们之间的距离是d=|c1-c2|a2+b2=|-6-14|62+82=2,故为:2.2.设α和β为不重合的两个平面,给出下列命题:
(1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;
(2)若α外一条直线l与α内的一条直线平行,则l和α平行;
(3)设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;
(4)直线l与α垂直的充分必要条件是l与α内的两条直线垂直.
上面命题,真命题的序号是______(写出所有真命题的序号)答案:由面面平行的判定定理可知,(1)正确.由线面平行的判定定理可知,(2)正确.对于(3)来说,α内直线只垂直于α和β的交线l,得不到其是β的垂线,故也得不出α⊥β.对于(4)来说,l只有和α内的两条相交直线垂直,才能得到l⊥α.也就是说当l垂直于α内的两条平行直线的话,l不一定垂直于α.3.如图:在平行六面体ABCD-A1B1C1D1中,M为A1C1与B1D1的交点.若则下列向量中与相等的向量是()
A.
B.
C.
D.
答案:A4.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是()
A.假设三内角都不大于60度
B.假设三内角都大于60度
C.假设三内角至多有一个大于60度
D.假设三内角至多有两个大于60度答案:B5.下列对一组数据的分析,不正确的说法是()
A.数据极差越小,样本数据分布越集中、稳定
B.数据平均数越小,样本数据分布越集中、稳定
C.数据标准差越小,样本数据分布越集中、稳定
D.数据方差越小,样本数据分布越集中、稳定答案:B6.如图,在△ABC中,D是AC的中点,E是BD的中点,AE交BC于F,则的值等于()
A.
B.
C.
D.
答案:A7.直线x+y-1=0到直线xsinα+ycosα-1=0(<α<)的角是()
A.α-
B.-α
C.α-
D.-α答案:D8.若关于x的方程x2+ax+a2-1=0有一正根和一负根,则a的取值范围为______.答案:令f(x)=x2+ax+a2-1,∴二次函数开口向上,若方程有一正一负根,则只需f(0)<0,即a2-1<0,∴-1<a<1.故为:-1<a<1.9.对变量x、y有观测数据(xi,yi)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(ui,vi)(i=1,2,…,10),得散点图2.由这两个散点图可以判断()
A.变量x与y正相关,u与v正相关
B.变量x与y正相关,u与v负相关
C.变量x与y负相关,u与v正相关
D.变量x与y负相关,u与v负相关答案:C10.设定义域为[x1,x2]的函数y=f(x)的图象为C,图象的两个端点分别为A、B,点O为坐标原点,点M是C上任意一点,向量OA=(x1,y1),OB=(x2,y2),OM=(x,y),满足x=λx1+(1-λ)x2(0<λ<1),又有向量ON=λOA+(1-λ)OB,现定义“函数y=f(x)在[x1,x2]上可在标准k下线性近似”是指|MN|≤k恒成立,其中k>0,k为常数.根据上面的表述,给出下列结论:
①A、B、N三点共线;
②直线MN的方向向量可以为a=(0,1);
③“函数y=5x2在[0,1]上可在标准1下线性近似”;
④“函数y=5x2在[0,1]上可在标准54下线性近似”.
其中所有正确结论的番号为______.答案:由ON=λOA+(1-λ)OB,得ON-OB=λ(OA-OB),即BN=λBA故①成立;∵向量OA=(x1,y1),OB=(x2,y2),向量ON=λOA+(1-λ)OB,∴向量ON的横坐标为λx1+(1-λ)x2(0<λ<1),∵OM=(x,y),满足x=λx1+(1-λ)x2(0<λ<1),∴MN∥y轴∴直线MN的方向向量可以为a=(0,1),故②成立对于函数y=5x2在[0,1]上,易得A(0,0),B(1,5),所以M(1-λ,5(1-λ)2),N(1-λ,5(1-λ)),从而|MN|=52(1-λ)2-(1-λ))2=25[(λ-12)2+14]2≤54,故函数y=5x2在[0,1]上可在标准54下线性近似”,故④成立,③不成立,故为:①②④11.已知=(-3,2,5),=(1,x,-1),且=2,则x的值为()
A.3
B.4
C.5
D.6答案:C12.已知函数f(x)=(12)x,a,b∈R*,A=f(a+b2),B=f(ab),C=f(2aba+b),则A、B、C的大小关系为______.答案:∵a+b2≥ab,2aba+b=21a+1b≤221ab=ab,∴a+b2≥ab≥2aba+b>0又
f(x)=(12)x在R上是减函数,∴f(a+b2)≤f(ab)
≤f(2aba+b)即A≤B≤C故为:A≤B≤C.13.已知,,且与垂直,则实数λ的值为()
A.±
B.1
C.-
D.答案:D14.在直角坐标系xoy
中,已知曲线C1:x=t+1y=1-2t(t为参数)与曲线C2:x=asinθy=3cosθ(θ为参数,a>0
)
有一个公共点在X轴上,则a等于______.答案:曲线C1:x=t+1y=1-2t(t为参数)化为普通方程:2x+y-3=0,令y=0,可得x=32曲线C2:x=asinθy=3cosθ(θ为参数,a>0
)化为普通方程:x2a2+y29=1∵两曲线有一个公共点在x轴上,∴94a2=1∴a=32故为:3215.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为()
A.35
B.25
C.15
D.7答案:C16.已知O是正方形ABCD对角线的交点,在以O,A,B,C,D这5点中任意一点为起点,另一点为终点的所有向量中,
(1)与BC相等的向量有
______;
(2)与OB长度相等的向量有
______;
(3)与DA共线的向量有
______.答案:如图:(1)与BC相等的向量有AD.(2)与OB长度相等的向量有OA、OC、OD、AO、CO、DO.(3)与DA共线的向量有
CB、BC.17.若两圆x2+y2=m和x2+y2+6x-8y-11=0有公共点,则实数m的取值范围是(
)
A.(-∞,1)
B.(121,+∞)
C.[1,121]
D.(1,121)答案:C18.由1、2、3可以组成______个没有重复数字的两位数.答案:没有重复数字的两位数共有3×2=6个故为:619.中心在坐标原点,离心率为的双曲线的焦点在y轴上,则它的渐近线方程为()
A.
B.
C.
D.答案:D20.若向量a=(2,-3,3)是直线l的方向向量,向量b=(1,0,0)是平面α的法向量,则直线l与平面α所成角的大小为______.答案:设直线l与平面α所成角为θ,则sinθ=|cos<a,b>|=|a•b||a|
|b|=222+(-3)2+(3)2×1=12,∵θ∈[0,π2],∴θ=π6,即直线l与平面α所成角的大小为π6.故为π6.21.以过椭圆+=1(a>b>0)的右焦点的弦为直径的圆与其右准线的位置关系是()
A.相交
B.相切
C.相离
D.不能确定答案:C22.在平面直角坐标系xOy中,已知点A(0,0),B(-2,0),C(-2,1).设k为非零实数,矩阵M=.k001.,N=.0110.,点A、B、C在矩阵MN对应的变换下得到点分别为A1、B1、C1,△A1B1C1的面积是△ABC面积的2倍,
(1)求k的值.
(2)判断变换MN是否可逆,如果可逆,求矩阵MN的逆矩阵;如不可逆,说明理由.答案:(1)由题设得MN=k0010110=01k0,由01k000-20-21=000-2k-2,可知A1(0,0)、B1(0,-2)、C1(k,-2).计算得△ABC面积的面积是1,△A1B1C1的面积是|k|,则由题设知:|k|=2×1=2.所以k的值为2或-2.(2)令MN=A,设B=abcd是A的逆矩阵,则AB=0k10abcd=1001⇒ckdkab=1001⇒ck=1dk=0a=0b=1①当k≠0时,上式⇒a=0b=1c=1kd=0,MN可逆,(8分)所以MN的逆矩阵是B=011k0.(10分)②当k≠0时,上式不可能成立,MN不可逆,(11分).23.点M(2,-3,1)关于坐标原点对称的点是()
A.(-2,3,-1)
B.(-2,-3,-1)
C.(2,-3,-1)
D.(-2,3,1)答案:A24.已知直线ax+by+c=0(a,b,c都是正数)与圆x2+y2=1相切,则以a,b,c为三边长的三角形()
A.是锐角三角形
B.是钝角三角形
C.是直角三角形
D.不存在答案:C25.下列各图中,可表示函数y=f(x)的图象的只可能是()A.
B.
C.
D.
答案:根据函数的定义知:自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应.∴从图象上看,任意一条与x轴垂直的直线与函数图象的交点最多只能有一个交点.从而排除A,B,C,故选D.26.(坐标系与参数方程选做题)过点(2,π3)且平行于极轴的直线的极坐标方程为______.答案:法一:先将极坐标化成直角坐标表示,(2,π3)化为(1,3),过(1,3)且平行于x轴的直线为y=3,再化成极坐标表示,即ρsinθ=3.法二:在极坐标系中,直接构造直角三角形由其边角关系得方程ρsinθ=3.设A(ρ,θ)是直线上的任一点,A到极轴的距离AH=2sinπ3=3,直接构造直角三角形由其边角关系得方程ρsinθ=3.故为:ρsinθ=327.不等式|3x-2|>4的解集是______.答案:由|3x-2|>4可得
3x-2>4
或3x-2<-4,∴x>2或x<-23.故为:(-∞,-23)∪(2,+∞).28.设向量a=(32,sinθ),b=(cosθ,13),其中θ∈(0,π2),若a∥b,则θ=______.答案:若a∥b,则sinθcosθ=12,即2sinθcosθ=1,∴sin2θ=1,又θ∈(0,π2),∴θ=π4.故为:π4.29.一个完整的程序框图至少应该包含______.答案:完整程序框图必须有起止框,用来表示程序的开始和结束,还要包括处理框,用来处理程序的执行.故为:起止框、处理框.30.若图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则()
A.k1<k2<k3
B.k3<k1<k2
C.k3<k2<k1
D.k1<k3<k2
答案:D31.直线3x+4y-7=0与直线6x+8y+3=0之间的距离是()
A.
B.2
C.
D.答案:C32.(几何证明选讲)如图,点A、B、C都在⊙O上,过点C的切线交AB的延长线于点D,若AB=5,BC=3,CD=6,则线段AC的长为______.答案:∵过点C的切线交AB的延长线于点D,∴DC是圆的切线,DBA是圆的割线,根据切割线定理得到DC2=DB?DA,∵AB=5,CD=6,∴36=DB(DB+5)∴DB=4,由题意知∠D=∠D,∠BCD=∠A∴△DBC∽△DCA,∴DCDA=BCCA∴AC=3×96=4.5,故为:4.533.已知双曲线的两条准线将两焦点间的线段三等分,则双曲线的离心率是______.答案:由题意可得2c×13=2a2c,∴3a2=c2,∴e=ca=3,故为:3.34.已知直线l:kx-y+1+2k=0.
(1)证明:直线l过定点;
(2)若直线l交x负半轴于A,交y正半轴于B,△AOB的面积为S,试求S的最小值并求出此时直线l的方程.答案:(1)证明:由已知得k(x+2)+(1-y)=0,∴无论k取何值,直线过定点(-2,1).(2)令y=0得A点坐标为(-2-1k,0),令x=0得B点坐标为(0,2k+1)(k>0),∴S△AOB=12|-2-1k||2k+1|
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 金融机构贷款合同模板
- 舞台桁架搭建协议
- 专业合同种植技术服务样本
- 招标文件标准范例
- 个人创业非固定员工保证书
- 保证书格式典范
- 广告服务合同的履行标准
- 嫖娼问题自我反省书
- 买卖合同取消协议书
- 防雷工程合作协议范本
- 2024年华润燃气集团招聘笔试参考题库含答案解析
- 岸基维修协议
- (完整版)翻译技巧翻译方法
- 中医护理技术操作平衡火罐技术操作流程与考核评分标准
- 2023年10月上海社会科学院工作人员招考聘用笔试历年难易错点考题荟萃附带答案详解
- 《法理学》(第三版教材)形成性考核作业1234答案
- 植物的抗热性
- 《人际关系与沟通技巧》(第3版)-教学大纲
- 2023年中医养生之药膳食疗考试试题
- 某土石方施工工程主要施工机械设备表
- 硅PU(塑料面层)检验批质量验收记录表
评论
0/150
提交评论