2023年安徽汽车职业技术学院高职单招(数学)试题库含答案解析_第1页
2023年安徽汽车职业技术学院高职单招(数学)试题库含答案解析_第2页
2023年安徽汽车职业技术学院高职单招(数学)试题库含答案解析_第3页
2023年安徽汽车职业技术学院高职单招(数学)试题库含答案解析_第4页
2023年安徽汽车职业技术学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年安徽汽车职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.△OAB中,OA=a,OB=b,OP=p,若p=t(a|a|+b|b|),t∈R,则点P一定在()A.∠AOB平分线所在直线上B.线段AB中垂线上C.AB边所在直线上D.AB边的中线上答案:∵△OAB中,OA=a,OB=b,OP=p,p=t(a|a|+b|b|),t∈R,∵a|a|

和b|b|

是△OAB中边OA、OB上的单位向量,∴(a|a|+b|b|

)在∠AOB平分线线上,∴t(a|a|+b|b|

)在∠AOB平分线线上,∴则点P一定在∠AOB平分线线上,故选A.2.已知椭圆的焦点为F1,F2,A在椭圆上,B在F1A的延长线上,且|AB|=|AF2|,则B点的轨迹形状为()

A.椭圆

B.双曲线

C.圆

D.两条平行线答案:C3.将一根长为3m的绳子在任意位置剪断,则剪得两段的长都不小于1m的概率是()A.14B.13C.12D.23答案:记“两段的长都不小于1m”为事件A,则只能在中间1m的绳子上剪断,剪得两段的长都不小于1m,所以事件A发生的概率

P(A)=13.故选B4.一圆锥侧面展开图为半圆,平面α与圆锥的轴成45°角,则平面α与该圆锥侧面相交的交线为()A.圆B.抛物线C.双曲线D.椭圆答案:设圆锥的母线长为R,底面半径为r,则:πR=2πr,∴R=2r,∴母线与高的夹角的正弦值=rR=12,∴母线与高的夹角是30°.由于平面α与圆锥的轴成45°>30°;则平面α与该圆锥侧面相交的交线为椭圆.故选D.5.设a=log32,b=log23,c=,则()

A.c<b<a

B.a<c<b

C.c<a<b

D.b<c<a答案:C6.若x~N(2,σ2),P(0<x<4)=0.8,则P(0<X<2)=______.答案:∵X~N(2,σ2),∴正态曲线关于x=2对称,∵P(0<X<4)=0.8,∴P(0<X<2)=12P(0<X<4)=0.4,故为:0.4.7.命题:“方程X2-2=0的解是X=±2”中使用逻辑联系词的情况是()A.没有使用逻辑连接词B.使用了逻辑连接词“且”C.使用了逻辑连接词“或”D.使用了逻辑连接词“非”答案:命题:“方程X2-2=0的解是X=±2”可以化为:“方程X2-2=0的解是X=2,或X=-2”故命题:“方程X2-2=0的解是X=±2”中使用逻辑联系词为:或故选C8.已知镭经过100年,质量便比原来减少4.24%,设质量为1的镭经过x年后的剩留量为y,则y=f(x)的函数解析式为(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100xD.0.9576100x答案:由题意可得,对于函数,当x=100时,y=95.76%=0.9576,结合选项检验选项A:x=100,y=0.0424,故排除A选项B:x=100,y=0.9576,故B正确故选:B解析:已知镭经过100年,质量便比原来减少4.24%,设质量为1的镭经过x年后的剩留量为y,则y=f(x)的函数解析式为(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100x9.“a2+b2≠0”的含义为()A.a和b都不为0B.a和b至少有一个为0C.a和b至少有一个不为0D.a不为0且b为0,或b不为0且a为0答案:a2+b2≠0的等价条件是a≠0或b≠0,即两者中至少有一个不为0,对照四个选项,只有C与此意思同,C正确;A中a和b都不为0,是a2+b2≠0充分不必要条件;B中a和b至少有一个为0包括了两个数都是0,故不对;D中只是两个数仅有一个为0,概括不全面,故不对;故选C10.若点A的坐标为(3,2),F是抛物线y2=2x的焦点,点M在抛物线上移动时,使|MF|+|MA|取得最小值的M的坐标为()A.(0,0)B.(12,1)C.(1,2)D.(2,2)答案:由题意得F(12,0),准线方程为x=-12,设点M到准线的距离为d=|PM|,则由抛物线的定义得|MA|+|MF|=|MA|+|PM|,故当P、A、M三点共线时,|MF|+|MA|取得最小值为|AP|=3-(-12)=72.把y=2代入抛物线y2=2x得x=2,故点M的坐标是(2,2),故选D.11.在数学归纳法证明多边形内角和定理时,第一步应验证()

A.n=1成立

B.n=2成立

C.n=3成立

D.n=4成立答案:C12.甲、乙两人对一批圆形零件毛坯进行成品加工.根据需求,成品的直径标准为100mm.现从他们两人的产品中各随机抽取5件,测得直径(单位:mm)如下:

甲:105

102

97

96

100

乙:100

101

102

97

100

(I)分别求甲、乙的样本平均数与方差,并由此估计谁加工的零件较好?

(Ⅱ)若从乙样本的5件产品中再次随机抽取2件,试求这2件产品中至少有一件产品直径为100mm的概率.答案:(Ⅰ).x甲=15(105+102+97+96+100)=100,.x乙=15(100+101+102+97+100)=100S甲=15(25+4+3+16+0)=545=10.8,S乙=15(0+1+4+9+0)=145=2.8.∵S甲>S乙,据此估计乙加工的零件好;(Ⅱ)从乙样本的5件产品中再次随机抽取2件的全部结果有如下10种:(100,101),(100,102),(100,97),(100,100),(101,102),(101,97),(101,100),(102,97),(102,100),(97,100).设事件A为“其中至少有一件产品直径为100”,则时间A有7种.故P(A)=710.13.若P(A∪B)=P(A)+P(B)=1,则事件A与事件B的关系是()

A.互斥事件

B.对立事件

C.不是互斥事件

D.前者都不对答案:D14.抛物线y=-12x2上一点N到其焦点F的距离是3,则点N到直线y=1的距离等于______.答案:∵抛物线y=-12x2化成标准方程为x2=-2y∴抛物线的焦点为F(0,-12),准线方程为y=12∵点N在抛物线上,到焦点F的距离是3,∴点N到准线y=12的距离也是3因此,点N到直线y=1的距离等于3+(1-12)=72故为:7215.一平面截球面产生的截面形状是______;它截圆柱面所产生的截面形状是______.答案:根据球的几何特征,一平面截球面产生的截面形状是圆;当平面与圆柱的底面平行时,截圆柱面所产生的截面形状为圆;当平面与圆柱的底面不平行时,截圆柱面所产生的截面形状为椭圆;故为:圆,圆或椭圆16.曲线的参数方程是(t是参数,t≠0),它的普通方程是()

A.(x-1)2(y-1)=1

B.

C.

D.答案:B17.设O为坐标原点,给定一个定点A(4,3),而点B(x,0)在x正半轴上移动,l(x)表示AB的长,则△OAB中两边长的比值的最大值为()

A.

B.

C.

D.答案:B18.设A(1,-1,1),B(3,1,5),则线段AB的中点在空间直角坐标系中的位置是()

A.在y轴上

B.在xOy面内

C.在xOz面内

D.在yOz面内答案:C19.已知正方形ABCD的边长为1,=,=,=,则|++|等于(

A.0

B.2

C.

D.3答案:B20.直线x3+y4=t被两坐标轴截得的线段长度为1,则t的值是

______.答案:令y=0,得:x=3t;令x=0,得:y=4t,所以被两坐标轴截得的线段长度为(3t)2+(4t)2=|5t|=1所以t=±15故为±1521.在△ABC中,=,=,且=2,则等于()

A.+

B.+

C.+

D.+答案:A22.如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD=8.BC是⊙O的直径,AB=AC=6,

OE∥AD.

(1)求二面角B-AD-F的大小;

(2)求直线BD与EF所成的角的余弦值.答案:(1)二面角B—AD—F的大小为45°(2)直线BD与EF所成的角的余弦值为解析:(1)∵AD与两圆所在的平面均垂直,∴AD⊥AB,AD⊥AF,故∠BAF是二面角B—AD—F的平面角.依题意可知,ABFC是正方形,∴∠BAF=45°.即二面角B—AD—F的大小为45°;(2)以O为原点,CB、AF、OE所在直线为坐标轴,建立空间直角坐标系(如图所示),则O(0,0,0),A(0,-3,0),B(3,0,0),D(0,-3,8),E(0,0,8),F(0,3,0),∴=(-3,-3,8),=(0,3,-8).cos〈,〉=

==-.设异面直线BD与EF所成角为,则cos=|cos〈,〉|=.即直线BD与EF所成的角的余弦值为.23.在直角坐标系xOy中,直线l的参数方程为x=3-22ty=5+22t(t为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=25sinθ.

(I)求圆C的参数方程;

(II)设圆C与直线l交于点A,B,求弦长|AB|答案:(Ⅰ)∵ρ=25sinθ,∴ρ2=25ρsinθ…(1分)所以,圆C的直角坐标方程为x2+y2-25y=0,即x2+(y-5)2=5…(3分)所以,圆C的参数方程为x=5cosθy=5+5sinθ(θ为参数)

…(4分)(Ⅱ)将直线l的参数方程代入圆C的直角坐标方程,得(3-22t)2+(22t)2=5即t2-32t+4=0…(5分)设两交点A,B所对应的参数分别为t1,t2,则t1+t2=32t1t2=4…(7分)∴|AB|=|t1-t2|=(t1+t2)2-4t1t2=18-16=2…(8分)24.已知命题p:“△ABC是等腰三角形”,命题q:“△ABC是直角三角形”,则命题“△ABC是等腰直角三角形”的形式是()A.p或qB.p且qC.非pD.以上都不对答案:因为“△ABC是等腰直角三角形”即为“△ABC是等腰且直角三角形”,所以命题“△ABC是等腰直角三角形”的形式是p且q,故选B.25.分析如图的程序:若输入38,运行右边的程序后,得到的结果是

______.答案:根据程序语句,其意义为:输入一个x,使得9<x<100a=x\10

为去十位数b=xMOD10

去余数,即取个位数x=10*b+a

重新组合数字,用原来二位数的十位当个位,个位当十位否则说明输入有误故当输入38时输出83故为:8326.在平行六面体ABCD-A′B′C′D′中,向量是()

A.有相同起点的向量

B.等长的向量

C.共面向量

D.不共面向量答案:C27.方程.12

41x

x21-3

9.=0的解集为______.答案:.12

41x

x21-3

9.=9x+2x2-12-4x+3x2-18=0,即x2+x-6=0,故x1=-3,x2=2.故方程的解集为{-3,2}.28.设抛物线y2=2px(p>0)上一点A(1,2)到点B(x0,0)的距离等于到直线x=-1的距离,则实数x0的值是______.答案:∵点A(1,2)在抛物线y2=2px(p>0)上,∴4=2p,p=2,故抛物线方程为y2=4x,准线方程为x=1.由点A(1,2)到点B(x0,0)的距离等于到直线x=-1的距离,故点B(x0,0)为抛物线y2=4x的焦点,故x0=1.故为1.29.抽样调查在抽取调查对象时()A.按一定的方法抽取B.随意抽取C.全部抽取D.根据个人的爱好抽取答案:一般地,抽样方法分为3种:简单随机抽样、分层抽样和系统抽样无论是哪种抽样方法,都遵循机会均等的原理,即在抽样过程中,各个体被抽到的概率是相等的.根据以上分析,可知只有A项符合题意.故选:A30.给出20个数:87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88它们的和是()A.1789B.1799C.1879D.1899答案:由题意知本题是一个求和问题,87+91+94+88+93+91+89+87+92+86+90+92+88+90+91+86+89+92+95+88=1799,故选B.31.过点A(0,2),且与抛物线C:y2=6x只有一个公共点的直线l有()条.A.1B.2C.3D.4答案:∵点A(0,2)在抛物线y2=6x的外部,∴与抛物线C:y2=6x只有一个公共点的直线l有三条,有两条直线与抛物线相切,有一条直线与抛物线的对称轴平行,故选C.32.如图,在半径为7的⊙O中,弦AB,CD相交于点P,PA=PB=2,PD=1,则圆心O到弦CD的距离为______.答案:由相交弦定理得,AP×PB=CP×PD,∴2×2=CP•1,解得:CP=4,又PD=1,∴CD=5,又⊙O的半径为7,则圆心O到弦CD的距离为d=r2-(CD2)2=7-(52)2=32.故为:32.33.与椭圆+y2=1共焦点且过点P(2,1)的双曲线方程是()

A.-y2=1

B.-y2=1

C.-=1

D.x2-=1答案:B34.已知直线a、b、c,其中a、b是异面直线,c∥a,b与c不相交.用反证法证明b、c是异面直线.答案:证明:假设b、c不是异面直线,则b、c共面.∵b与c不相交,∴b∥c.又∵c∥a,∴根据公理4可知b∥a.这与已知a、b是异面直线相矛盾.故b、c是异面直线.35.若90°<θ<180°,曲线x2+y2sinθ=1表示()

A.焦点在x轴上的双曲线

B.焦点在y轴上的双曲线

C.焦点在x轴上的椭圆

D.焦点在y轴上的椭圆答案:D36.已知a=(a1,a2),b=(b1,b2),丨a丨=5,丨b丨=6,a•b=30,则a1+a2b1+b2=______.答案:因为丨a丨=5,丨b丨=6,a•b=30,又a⋅b=|a|⋅|b|cos<a,b>=30,即cos<a,b>=1,所以a,b同向共线.设b=ka,(k>0).则b1=ka1,b2=ka2,所以|b|=k|a|,所以k=65,所以a1+a2b1+b2=a1+a2k(a1+a2)=1k=56.故为:56.37.设随机事件A、B,P(A)=35,P(B|A)=12,则P(AB)=______.答案:由条件概率的计算公式,可得P(AB)=P(A)×P(B|A)=35×12=310;故为310.38.设P点在x轴上,Q点在y轴上,PQ的中点是M(-1,2),则|PQ|等于______.答案:设P(a,0),Q(0,b),∵PQ的中点是M(-1,2),∴由中点坐标公式得a+02=-10+b2=2,解之得a=-2b=4,因此可得P(-2,0),Q(0,4),∴|PQ|=(-2-0)2+(0-4)2=25.故为:2539.若a=0.30.2,b=20.4,c=0.30.3,则a,b,c三个数的大小关系是:______(用符号“>”连接这三个字母)答案:∵1=0.30>0.30.2>0.30.3,又∵20.4>20=1,∴b>a>c.故为:b>a>c.40.直线ax+2y+3=0和直线2x+ay-1=0具有相同的方向向量,则a=______.答案:∵直线ax+2y+3=0和直线2x+ay-1=0具有相同的方向向量∴两条直线互相平行,可得a2=2a≠3-1,解之得a=±2故为:±241.用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的假设为()

A.a,b,c都是奇数

B.a,b,c都是偶数

C.a,b,c中至少有两个偶数

D.a,b,c中至少有两个偶数或都是奇数答案:D42.(几何证明选讲选做题)如图,已知四边形ABCD内接于⊙O,且AB为⊙O的直径,直线MN切

⊙O于D,∠MDA=45°,则∠DCB=______.答案:连接BD,∵AB为⊙O的直径,直线MN切⊙O于D,∠MDA=45°,∴∠ABD=45°,∠ADB=90°,∴∠DCB=∠ABD+∠ADB=45°+90°=135°.故为:135°.43.若A,B,C是直线存在实数x使得,实数x为()

A.-1

B.0

C.

D.答案:A44.设U={x|x<7,x∈N+}A={1,2,5},B={2,3,4,5},求A∩B,CUA,A∪(CUB).答案:∵U={1,2,3,4,5,6}A∩B={2,5}CUA={3,4,6}A∪CUB={1}45.设i为虚数单位,若=b+i(a,b∈R),则a,b的值为()

A.a=0,b=1

B.a=1,b=0

C.a=1,b=1

D.a=,b=-1答案:B46.若a2+b2=c2,求证:a,b,c不可能都是奇数.答案:证明:假设a,b,c都是奇数,则a2,b2,c2都是奇数,得a2+b2为偶数,而c2为奇数,即a2+b2≠c2,这与a2+b2=c2相矛盾,所以假设不成立,故原命题成立.47.随机变量X的概率分布规律为P(X=n)=(n=1,2,3,4),其中a是常数,则P()的值为()

A.

B.

C.

D.

答案:D48.

若向量

=(3,2),=(0,-1),=(-1,2),则向量2-的坐标坐标是(

A.(3,-4)

B.(-3,4)

C.(3,4)

D.(-3,-4)答案:D49.点M的直角坐标为(,1,-2),则它的柱坐标为()

A.(2,,2)

B.(2,,2)

C.(2,,-2)

D.(2,-,-2)答案:C50.若方程sin2x+4sinx+m=0有实数解,则m的取值范围是(

A、R

B、(-∞,-5]∪[3,+∞)

C、(-5,3)

D、[-5,3]答案:D第2卷一.综合题(共50题)1.已知直线l经过点A(2,4),且被平行直线l1:x-y+1=0与l2:x-y-1=0所截得的线段的中点M在直线x+y-3=0上.求直线l的方程.答案:∵点M在直线x+y-3=0上,∴设点M坐标为(t,3-t),则点M到l1、l2的距离相等,即|2t-2|2=|2t-4|2,解得t=32∴M(32,32)又l过点A(2,4),即5x-y-6=0,故直线l的方程为5x-y-6=0.2.向量a、b满足|a|=1,|b|=2,且a与b的夹角为π3,则|a+2b|=______.答案:∵|a|=1,|b|=2,且a与b的夹角为π3,∴a?b=|a|?|b|?cosπ3=1因此,(a+2b)2=|a|2+4a?b+4|b|2=12+4×1+4|b|2=21∴|a+2b|=21故为:213.过点P(-3,0)且倾斜角为30°的直线和曲线x=t+1ty=t-1t(t为参数)相交于A,B两点.求线段AB的长.答案:直线的参数方程为

x

=

-3

+

32sy

=

12s

(s

为参数),曲线x=t+1ty=t-1t

可以化为

x2-y2=4.将直线的参数方程代入上式,得

s2-63s+

10

=

0.设A、B对应的参数分别为s1,s2,∴s1+

s2=

6

3,s1•s2=10.∴AB=|s1-s2|=(s1+s2)2-4s1s2=217.4.如图所示,图中线条构成的所有矩形中(由6个小的正方形组成),其中为正方形的概率为

______.答案:它的长有10种取法,由长与宽的对称性,得到它的宽也有10种取法;因为,长与宽相互独立,所以得到长X宽的个数有:10X10=100个即总的矩形的个数有:100个长=宽的个数为:(1X1的正方形的个数)+(2X2的正方形个数)+(3X3的正方形个数)+(4X4的正方形个数)=16+9+4+1=30个即正方形的个数有:30个所以为正方形的概率是30100=0.3故为0.35.为求方程x5-1=0的虚根,可以把原方程变形为(x-1)(x2+ax+1)(x2+bx+1)=0,由此可得原方程的一个虚根为______.答案:由题可知(x-1)(x2+ax+1)(x2+bx+1)=(x-1)[x4+(a+b)x3+(2+ab)x2+(a+b)x+1]比较系数可得a+b=1ab+2=1,∴a=1+52,b=1-52∴原方程的一个虚根为-1-5±10-25i4,-1+5±10+25i4中的一个故为:-1-5+10-25i4.6.(选做题)参数方程中当t为参数时,化为普通方程为(

)。答案:x2-y2=17.直角三角形两直角边边长分别为3和4,将此三角形绕其斜边旋转一周,求得到的旋转体的表面积和体积.答案:根据题意,所求旋转体由两个同底的圆锥拼接而成它的底面半径等于直角三角形斜边上的高,高分别等于两条直角边在斜边的射影长∵两直角边边长分别为3和4,∴斜边长为32+42=5,由面积公式可得斜边上的高为h=3×45=125可得所求旋转体的底面半径r=125因此,两个圆锥的侧面积分别为S上侧面=π×125×4=48π5;S下侧面=π×125×3=36π5∴旋转体的表面积S=48π5+36π5=84π5由锥体的体积公式,可得旋转体的体积为V=13π×(125)2×5=48π58.下列三句话按“三段论”模式排列顺序正确的是()

①y=sin

x(x∈R

)是三角函数;②三角函数是周期函数;

③y=sin

x(x∈R

)是周期函数.

A.①②③

B.②①③

C.②③①

D.③②①答案:B9.如图①y=ax,②y=bx,③y=cx,④y=dx,根据图象可得a、b、c、d与1的大小关系为()

A.a<b<1<c<d

B.b<a<1<d<c

C.1<a<b<c<d

D.a<b<1<d<c

答案:B10.(1)用红、黄、蓝、白四种不同颜色的鲜花布置如图一所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域用不同颜色鲜花,问共有多少种不同的摆放方案?

(2)用红、黄、蓝、白、橙五种不同颜色的鲜花布置如图二所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域使用不同颜色鲜花.

①求恰有两个区域用红色鲜花的概率;

②记花圃中红色鲜花区域的块数为S,求它的分布列及其数学期望E(S).

答案:(1)根据分步计数原理,摆放鲜花的不同方案有:4×3×2×2=48种(2)①设M表示事件“恰有两个区域用红色鲜花”,如图二,当区域A、D同色时,共有5×4×3×1×3=180种;当区域A、D不同色时,共有5×4×3×2×2=240种;因此,所有基本事件总数为:180+240=420种.(由于只有A、D,B、E可能同色,故可按选用3色、4色、5色分类计算,求出基本事件总数为A53+2A51+A55=420种)它们是等可能的.又因为A、D为红色时,共有4×3×3=36种;B、E为红色时,共有4×3×3=36种;因此,事件M包含的基本事件有:36+36=72种.所以,P(M)=72420=635②随机变量ξ的分布列为:ξ012P6352335635所以,E(ξ)=0×635+1×2335+2×635=111.证明:等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.答案:证明见解析:建立如图所示的直角坐标系.设,,其中,.则直线的方程为,直线的方程为.设底边上任意一点为,则到的距离;到的距离;到的距离.因为,所以,结论成立.12.若关于x的不等式(1+k2)x≤k4+4的解集是M,则对任意实常数k,总有(

A.

B.

C.

D.,0∈M答案:A13.从甲、乙、丙、丁四人中任选两名代表,甲被选中的概率为

______.答案:由题意:甲、乙、丙、丁四人中任选两名代表,共有六种情况:甲和乙、甲和丙、甲和丁、乙和丙、乙和丁、丙和丁,因每种情况出现的可能性相等,所以甲被选中的概率为12.故为:12.14.已知函数f(x)=2x,数列{an}满足a1=f(0),且f(an+1)=(n∈N*),

(1)证明数列{an}是等差数列,并求a2010的值;

(2)分别求出满足下列三个不等式:,

的k的取值范围,并求出同时满足三个不等式的k的最大值;

(3)若不等式对一切n∈N*都成立,猜想k的最大值,并予以证明。答案:解:(1)由,得,即,∴是等差数列,∴,∴。(2)由,得;,得;,得,,∴当k同时满足三个不等式时,。(3)由,得恒成立,令,则,,∴,∵F(n)是关于n的单调增函数,∴,∴。15.不等式的解集

.答案:;解析:略16.已知向量=(2,4,x),=(2,y,2),若||=6,

⊥,则x+y的值是()

A.-3或1

B.3或1

C.-3

D.1答案:A17.已知|log12x+4i|≥5,则实数x

的取值范围是______.答案:由题意,得(log12x)2+42≥5?|log12x|≥3?0<x≤18或x≥8.∴则实数x

的取值范围是0<x≤18或x≥8.故为:0<x≤18或x≥8.18.已知a、b均为单位向量,它们的夹角为60°,那么|a+3b|等于______.答案:解;∵a,b均为单位向量,∴|a|=1,|b|=1又∵两向量的夹角为60°,∴a?b=|a||b|cos60°=12∴|a+3b|=|a|2+(3b)2+6a?b=1+9+3=13故为1319.类比“等差数列的定义”给出一个新数列“等和数列的定义”是()A.连续两项的和相等的数列叫等和数列B.从第一项起,以后每一项与前一项的和都相等的数列叫等和数列C.从第二项起,以后每一项与前一项的差都不相等的数列叫等和数列D.从第二项起,以后每一项与前一项的和都相等的数列叫等和数列答案:由等差数列的定义:从第二项起,以后每一项与前一项的差都相等的数列叫等差数列类比可得:从第二项起,以后每一项与前一项的和都相等的数列叫等和数列故选D20.设F1,F2分别是椭圆x24+y2=1的左、右焦点,P是第一象限内该椭圆上的一点,且P、F1、F2三点构成一直角三角形,则点P的纵坐标为______.答案:由题意,P是第一象限内该椭圆上的一点,且P、F1、F2三点构成一直角三角形,故可分为两类:①当∠P为直角时,设P的纵坐标为y,则F1,F2分别是椭圆x24+y2=1的左、右焦点∴|PF1|+|PF2|=4,|F1F2|=23∵∠P为直角,∴|PF1|2+|PF2|2=|F1F2|2,∵|PF1|+|PF2|=4,|F1F2|=23∴|PF1||PF2|=2∴S△PF1F2=12|PF1||PF2|=1∵S△PF1F2=12|F1F2|×y=3y∴3y=1∴y=33②当∠PF2F1为直角时,P的横坐标为3设P的纵坐标为y(y>0),则(3)24+y2=1,∴y=12故为:33

或1221.O、A、B、C为空间四个点,又为空间的一个基底,则()

A.O、A、B、C四点共线

B.O、A、B、C四点共面,但不共线

C.O、A、B、C四点中任意三点不共线

D.O、A、B、C四点不共面答案:D22.否定结论“至少有一个解”的说法中,正确的是()

A.至多有一个解

B.至少有两个解

C.恰有一个解

D.没有解答案:D23.已知=(-3,2,5),=(1,x,-1),且=2,则x的值为()

A.3

B.4

C.5

D.6答案:C24.函数f(x)=11+x2(x∈R)的值域是()A.(0,1)B.(0,1]C.[0,1)D.[0,1]答案:∵函数f(x)=11+x2(x∈R),∴1+x2≥1,所以原函数的值域是(0,1],故选B.25.(不等式选讲选做题)已知x+2y+3z=1,求x2+y2+z2的最小值______.答案:解法一:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2)(12+22+33),∴x2+y2+z2≥114,当且仅当x1=y2=z3,x+2y+3z=1,即x=114,y=17,z=314时取等号.即x2+y2+z2的最小值为114.解法二:设向量a=(1,2,3),b=(x,y,z),∵|a?b|≤|a|

|b|,∴1=x+2y+3z≤12+22+32x2+y2+z2,∴x2+y2+z2≥114,当且仅当a与b共线时取等号,即x1=y2=z3,x+2y+3z=1,解得x=114,y=17,z=314时取等号.故为114.26.设O是坐标原点,F是抛物线y2=2px(p>0)的焦点,A是抛物线上的一个动点,FA与x轴正方向的夹角为60°,求|OA|的值.答案:由题意设A(x+P2,3x),代入y2=2px得(3x)2=2p(x+p2)解得x=p(负值舍去).∴A(32p,3p)∴|OA|=(32p)2+3p2=212p27.如图,A地到火车站共有两条路径L1和L2,据统计,通过两条路径所用的时间互不影响,所用时间落在各时间段内的频率如下表:所用时间(分钟)10~2020~3030~4040~5050~60L1的频率0.10.20.30.20.2L2的频率00.10.40.40.1现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站.

(Ⅰ)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?

(Ⅱ)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(Ⅰ)的选择方案,求X的分布列和数学期望.答案:(Ⅰ)Ai表示事件“甲选择路径Li时,40分钟内赶到火车站”,Bi表示事件“乙选择路径Li时,50分钟内赶到火车站”,i=1,2.用频率估计相应的概率可得∵P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,∵P(A1)>P(A2)∴甲应选择LiP(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,∵P(B2)>P(B1),∴乙应选择L2.(Ⅱ)A,B分别表示针对(Ⅰ)的选择方案,甲、乙在各自允许的时间内赶到火车站,由(Ⅰ)知P(A)=0.6,P(B)=0.9,又由题意知,A,B独立,P(X=0)=P(.A.B)=P(.A)P(.B)=0.4×0.1=0.04P(x=1)=P(.AB+A.B)=P(.A)P(B)+P(A)P(.B)=0.4×0.9+0.6×0.1=0.42P(X=2)=P(AB)=P(A)(B)=0.6×0.9=0.54X的分布列EX=0×0.04+1×0.42+2×0.54=1.5.28.右图程序运行后输出的结果为()

A.3456

B.4567

C.5678

D.6789

答案:A29.已知平行四边形ABCD,下列正确的是()

A.

B.

C.

D.答案:B30.已知函数f

(x)=logx,则方程()|x|=|f(x)|的实根个数是()

A.1

B.2

C.3

D.2006答案:B31.如图,在⊙O中,弦CD垂直于直径AB,求证:CBCO=CDCA.答案:证明:连接AD,如图所示:由垂径定理得:AD=AC又∵OC=OB∴∠ADC=∠OBC=∠ACD=∠OCB∴△CAD∽△COB∴CBCO=CDCA.32.将程序补充完整

INPUT

x

m=xMOD2

IF______THEN

PRINT“x是偶数”

ELSE

PRINT“x是奇数”

END

IF

END.答案:本程序的作用是判断出输入的数是奇数还是偶数,由其逻辑关系知,若逻辑是“是”则输出“x是偶数”,若逻辑是“否”,则输出“x是奇数”故判断条件应为m=0故为m=033.三行三列的方阵.a11a12

a13a21a22

a23a31a32

a33.中有9个数aji(i=1,2,3;j=1,2,3),从中任取三个数,则它们不同行且不同列的概率是()A.37B.47C.114D.1314答案:从给出的9个数中任取3个数,共有C39;从三行三列的方阵中任取三个数,使它们不同行且不同列:从第一行中任取一个数有C13种方法,则第二行只能从另外两列中的两个数任取一个有C12种方法,第三行只能从剩下的一列中取即可有1中方法,∴共有C13×C12×C11=6.∴从三行三列的方阵中任取三个数,则它们不同行且同列的概率P=6C39=114.故选C.34.|a|=2,|b|=3,|a+b|=4,则a与b的夹角是______.答案:∵|a+b|=4,∴a2+2a?b+b2=16∴a?b=32∴cos<a,b>=a?b|.a|×|.b|=322×3=14∵<a,b>∈[0°,180°]∴.a与.b的夹角为arccos14故为arccos1435.设曲线C的参数方程为(θ为参数),直线l的方程为x-3y+2=0,则曲线C上到直线l距离为的点的个数为()

A.1

B.2

C.3

D.4答案:B36.求证:若圆内接五边形的每个角都相等,则它为正五边形.答案:证明:设圆内接五边形为ABCDE,圆心是O.连接OA,OB,OCOD,OE,可得五个三角形∵OA=OB=OC=OD=OE=半径,∴有五个等腰三角形在△OAB、△OBC、△OCD、△ODE、△OEA中则∠OAB=∠OBA,∠OBC=∠OCB,∠OCD=∠ODC,∠ODE=∠OED,∠OEA=∠OAE因为所有内角相等,所以∠OAE+∠OAB=∠OBA+∠OBC,所以∠OAE=∠OBC同理证明∠OBA=∠OCD,∠OCB=∠OED,∠ODC=∠OEA,∠OED=∠OAB则△OAB、△OBC、△OCD、△ODE、△OEA中,∠AOB=∠BOC=∠COD=∠DOE=∠EOA∴△OAB≌△OBC≌△OCD≌△ODE≌△OEA

(SAS边角边定律)∴AB=BC=CD=DE=EA∴五边形ABCDE为正五边形37.(理)在极坐标系中,半径为1,且圆心在(1,0)的圆的方程为()

A.ρ=sinθ

B.ρ=cosθ

C.ρ=2sinθ

D.ρ=2cosθ答案:D38.对任意实数x,y,定义运算x*y=ax+by+cxy,其中a,b,c是常数,等式右边的运算是通常的加法和乘法运算。已知1*2=3,2*3=4,并且有一个非零常数m,使得对任意实数x,都有x*m=x,则m的值是[

]

A.4

B.-4

C.-5

D.6答案:A39.不等式≥0的解集为[-2,3∪[7,+∞,则a-b+c的值是(

)A.2B.-2C.8D.6答案:B解析:∵-a、b的值为-2,7中的一个,x≠c

c=3∴a-b=-(b-a)=-(-2+7)=-5a-b+c=-5+3=-2

选B评析:考察考生对不等式解集的结构特征的理解,关注不等式中等号与不等号的关系。40.下列各图中,可表示函数y=f(x)的图象的只可能是()A.

B.

C.

D.

答案:根据函数的定义知:自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应.∴从图象上看,任意一条与x轴垂直的直线与函数图象的交点最多只能有一个交点.从而排除A,B,C,故选D.41.在平行四边形ABCD中,等于()

A.

B.

C.

D.答案:C42.给出下列说法:①球的半径是球面上任意一点与球心的连线段;②球的直径是球面上任意两点的连线段;③用一个平面截一个球面,得到的是一个圆;④球常用表示球心的字母表示.其中说法正确的是______.答案:根据球的定义直接判断①正确;②错误;;③用一个平面截一个球面,得到的是一个圆;可以是小圆,也可能是大圆,正确;④球常用表示球心的字母表示.满足球的定义正确;故为:①③④43.某海域有A、B两个岛屿,B岛在A岛正东40海里处.经多年观察研究发现,某种鱼群洄游的路线像一个椭圆,其焦点恰好是A、B两岛.曾有渔船在距A岛正西20海里发现过鱼群.某日,研究人员在A、B两岛同时用声纳探测仪发出不同频率的探测信号(传播速度相同),A、B两岛收到鱼群反射信号的时间比为5:3.你能否确定鱼群此时分别与A、B两岛的距离?答案:以AB的中点为原点,AB所在直线为x轴建立直角坐标系设椭圆方程为:x2a2+y2b2=1(a>b>0)且c=a2-b2------(3分)因为焦点A的正西方向椭圆上的点为左顶点,所以a-c=20------(5分)又|AB|=2c=40,则c=20,a=40,故b=203------(7分)所以鱼群的运动轨迹方程是x21600+y21200=1------(8分)由于A,B两岛收到鱼群反射信号的时间比为5:3,因此设此时距A,B两岛的距离分别为5k,3k-------(10分)由椭圆的定义可知5k+3k=2×40=80⇒k=10--------(13分)即鱼群分别距A,B两岛的距离为50海里和30海里.------(14分)44.设A、B为两个事件,若事件A和B同时发生的概率为310,在事件A发生的条件下,事件B发生的概率为12,则事件A发生的概率为______.答案:根据题意,得∵P(A|B)=P(AB)P(B),P(AB)=310,P(A|B)=12∴12=310P(B),解得P(B)=31012=35故为:3545.以椭圆x23+y2=1的右焦点为焦点,且顶点在原点的抛物线标准方程为______.答案:∵椭圆x23+y2=1的右焦点F(2,0),∴以F(2,0)为焦点,顶点在原点的抛物线标准方程为y2=42x.故为:y2=42x.46.=(2,1),=(3,4),则向量在向量方向上的投影为()

A.

B.

C.2

D.10答案:C47.已知||=3,A、B分别在x轴和y轴上运动,O为原点,则动点P的轨迹方程是()

A.

B.

C.

D.答案:B48.一牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为0.02.设发病的牛的头数为ξ,则Dξ=______;.答案:∵由题意知该病的发病率为0.02,且每次实验结果都是相互独立的,∴ξ~B(10,0.02),∴由二项分布的方差公式得到Dξ=10×0.02×0.98=0.196.故为:0.19649.“a=2”是“直线ax+2y=0平行于直线x+y=1”的(

A.充分而不必要条件

B.必要而不充分条件

C.充分必要条件

D.既不充分也不必要条件答案:C50.不论k为何实数,直线y=kx+1与曲线x2+y2-2ax+a2-2a-4=0恒有交点,则实数a的取值范围是______.答案:直线y=kx+1恒过(0,1)点,与曲线x2+y2-2ax+a2-2a-4=0恒有交点,必须定点在圆上或圆内,即:a2+12

≤4+2a所以,-1≤a≤3故为:-1≤a≤3.第3卷一.综合题(共50题)1.直线kx-y+1=3k,当k变动时,所有直线都通过定点()

A.(0,0)

B.(0,1)

C.(3,1)

D.(2,1)答案:C2.已知函数f(x)=

-x+1,x<0x-1,x≥0,则不等式x+(x+1)f(x+1)≤1的解集是()

A.[-1,

2-1]B.(-∞,1]C.(-∞,

2-1]D.[-

2-1,

2-1]答案:C解析:由题意x+(x+1)f(x+1)=3.气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于22

(℃)”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):

①甲地:5个数据的中位数为24,众数为22;

②乙地:5个数据的中位数为27,总体均值为24;

③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8;

则肯定进入夏季的地区有()A.0个B.1个C.2个D.3个答案:①甲地:5个数据的中位数为24,众数为22,根据数据得出:甲地连续5天的日平均温度的记录数据可能为:22,22,24,25,26.其连续5天的日平均温度均不低于22.

②乙地:5个数据的中位数为27,总体均值为24.根据其总体均值为24可知其连续5天的日平均温度均不低于22.③丙地:5个数据中有一个数据是32,总体均值为26,根据其总体均值为24可知其连续5天的日平均温度均不低于22.则肯定进入夏季的地区有甲、乙、丙三地.故选D.4.某学校为了解该校1200名男生的百米成绩(单位:秒),随机选择了50名学生进行调查.如图是这50名学生百米成绩的频率分布直方图.根据样本的频率分布,估计这1200名学生中成绩在[13,15](单位:秒)内的人数大约是______.答案:∵由图知,前面两个小矩形的面积=0.02×1+0.18×1=0.2,即频率,∴1200名学生中成绩在[13,15](单位:s)内的人数大约是0.2×1200=240.故为240.5.已知命题p、q,若命题“p∨q”与命题“¬p”都是真命题,则()A.命题q一定是真命题B.命题q不一定是真命题C.命题p不一定是假命题D.命题p与命题q的真值相等答案:∵命题“¬p”与命题“p∨q”都是真命题,∴命题p为假命题,q为真命题.故选A.6.从2008名学生中选取50名学生参加数学竞赛,若采用下面的方法选取:先用简单随机抽样从2008人中剔除8人,剩下的2000人再按系统抽样的方法抽取50人,则在2008人中,每人入选的概率()

A.不全相等

B.均不相等

C.都相等,且为

D.都相等,且为答案:C7.经过点M(1,1)且在两轴上截距相等的直线是______.答案:①当所求的直线与两坐标轴的截距不为0时,设该直线的方程为x+y=a,把(1,1)代入所设的方程得:a=2,则所求直线的方程为x+y=2;②当所求的直线与两坐标轴的截距为0时,设该直线的方程为y=kx,把(1,1)代入所求的方程得:k=1,则所求直线的方程为y=x.综上,所求直线的方程为:x+y=2或y=x.故为:x+y=2或y=x8.在平行四边形ABCD中,AC与BD交于点O,E是线段CD的中点,若AC=a,BD=b,则AE=______.(用a、b表示)答案:∵平行四边形ABCD中,AC与BD交于点O,E是线段CD的中点,若AC=a,BD=b,∴AE=AO+OE=12a+OD+OC2=12a+a+b4=3a4+14b.故为:34a+14b.9.如图,直线AB是平面α的斜线,A为斜足,若点P在平面α内运动,使得点P到直线AB的距离为定值a(a>0),则动点P的轨迹是()A.圆B.椭圆C.一条直线D.两条平行直线答案:因为点P到直线AB的距离为定值a,所以,P点在以AB为轴的圆柱的侧面上,又直线AB是平面α的斜线,且点P在平面α内运动,所以,可以理解为用用与圆柱底面不平行的平面截圆柱的侧面,所以得到的轨迹是椭圆.故选B.10.{,,}是空间向量的一个基底,设=+,=+,=+,给出下列向量组:①{,,}②{,,},③{,,},④{,,},其中可以作为空间向量基底的向量组有()组.

A.1

B.2

C.3

D.4答案:C11.从集合M={1,2,3,…,10}选出5个数组成的子集,使得这5个数的任两个数之和都不等于11,则这样的子集有______个.答案:集合{1,2,…,10}中和是11的有:1+10,2+9,3+8,4+7,5+6,选出5个不同的数组成子集,就是从这5组中分别取一个数,而每组的取法有2种,所以这样的子集有:2×2×2×2×2=32故这样的子集有32个故为:3212.已知实数x、y满足(x-2)2+y2+(x+2)2+y2=6,则2x+y的最大值等于______.答案:∵实数x、y满足(x-2)2+y2+(x+2)2+y2=6,∴点(x,y)的轨迹是椭圆,其方程为x29+y25=1,所以可设x=3cosθ,y=5sinθ,则z=6cosθ+5sinθ=41sin(θ+

β)≤41,∴2x+y的最大值等于41.故为:4113.有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.

(1)选修4-2:矩阵与变换

已知点A(1,0),B(2,2),C(3,0),矩阵M表示变换”顺时针旋转45°”.

(Ⅰ)写出矩阵M及其逆矩阵M-1;

(Ⅱ)请写出△ABC在矩阵M-1对应的变换作用下所得△A1B1C1的面积.

(2)选修4-4:坐标系与参数方程

过P(2,0)作倾斜角为α的直线l与曲线E:x=cosθy=22sinθ(θ为参数)交于A,B两点.

(Ⅰ)求曲线E的普通方程及l的参数方程;

(Ⅱ)求sinα的取值范围.

(3)(选修4-5

不等式证明选讲)

已知正实数a、b、c满足条件a+b+c=3,

(Ⅰ)求证:a+b+c≤3;

(Ⅱ)若c=ab,求c的最大值.答案:(1)(Ⅰ)M=cos(-45°)-sin(-45°)sin(-45°)

cos(-45°)=2222-2222∵矩阵M表示变换“顺时针旋转45°”∴矩阵M-1表示变换“逆时针旋转45°”∴M-1=cos45°-sin45°sin45°

cos45°=22-2222

22(Ⅱ)三角形ABC的面积S△ABC=12×(3-1)×2=2,由于△ABC在旋转变换下所得△A1B1C1与△ABC全等,故三角形的面积不变,即S△A1B1C1=2.(2)(Ⅰ)曲线E的普通方程为x2+2y2=1L的参数方程为x=2+tcosαy=tsinα(t为参数)

(Ⅱ)将L的参数方程代入由线E的方程得(1+sin2α)t2+(4cosα)t+3=0由△=(4cosα)2-4(1+sin2α)×3≥0得sin2α≤17∴0≤sinα≤77(3)(Ⅰ)证明:由柯西不等式得(a+b+c)2≤(a+b+c)(1+1+1)代入已知a+b+c=3,∴(a+b+c)2≤9a+b+c≤3当且仅当a=b=c=1,取等号.(Ⅱ)由a+b≥2ab得2ab+c≤3,若c=ab,则2c+c≤3,(c+3)(c-1)≤0,所以c≤1,c≤1,当且仅当a=b=1时,c有最大值1.14.已知|a|=1,|b|=2,向量a与b的夹角为60°,则|a+b|=______.答案:∵已知|a|=1,|b|=2,向量a与b的夹角为60°,∴a2=1,b2=4,a?b=1×2×cos60°=1,.∴|.a+b|2=a2+b2+2a?b=1+4+2=7,∴|.a+b|

=7,故为7.15.已知函数f(x)满足:f(p+q)=f(p)f(q),f(1)=2,则:f(2)f(1)+f(4)f(3)+f(6)f(5)+f(8)f(7)+…+f(2006)f(2005)=______答案:∵f(p+q)=f(p)f(q),∴f(p+1)=f(p)f(1)即f(p+1)f(p)=f(1)=2,∴f(2)f(1)=2,f(4)f(3)=2…f(2006)f(2005)=2即f(2)f(1)+f(4)f(3)+f(6)f(5)+f(8)f(7)+…+f(2006)f(2005)=2×1003=2006故为:200616.点B是点A(1,2,3)在坐标平面yOz内的正投影,则|OB|等于()

A.

B.

C.

D.答案:B17.当圆x=4cosθy=4sinθ上一点P的旋转角为θ=23π时,点P的坐标为______.答案:根据圆的参数方程的意义,当圆x=4cosθy=4sinθ上一点P的旋转角为θ=23π时,点P的坐标为(4cos2π3,4sin2π3),即(-2,23).故为:(-2,23).18.若f(x)=exx≤0lnxx>0,则f(f(12))=______.答案:∵f(x)=ex,x≤0lnx,x>0,∴f(f(12))=f(ln12)=eln12=12.故为:12.19.在极坐标系中,曲线ρ=2cosθ所表示图形的面积为______.答案:将原极坐标方程为p=2cosθ,化成:p2=2ρcosθ,其直角坐标方程为:∴x2+y2=2x,是一个半径为1的圆,其面积为π.故填:π.20.圆C1x2+y2-4y-5=0与圆C2x2+y2-2x-2y+1=0位置关系是()

A.内含

B.内切

C.相交

D.外切答案:A21.命题:“方程X2-2=0的解是X=±2”中使用逻辑联系词的情况是()A.没有使用逻辑连接词B.使用了逻辑连接词“且”C.使用了逻辑连接词“或”D.使用了逻辑连接词“非”答案:命题:“方程X2-2=0的解是X=±2”可以化为:“方程X2-2=0的解是X=2,或X=-2”故命题:“方程X2-2=0的解是X=±2”中使用逻辑联系词为:或故选C22.已知两条直线l1:y=x,l2:ax-y=0,其中a为实数,当这两条直线的夹角在(0,)内变动时,a的取值范围是(

A.(0,1)

B.

C.

D.答案:C23.如图,圆心角∠AOB=120°,P是AB上任一点(不与A,B重合),点C在AP的延长线上,则∠BPC等于______.

答案:解:设点E是优弧AB(不与A、B重合)上的一点,∵∠AOB=120°,∴∠AEB=60°,∵∠BPA=180°-∠AEB=180°-∠BPC,∴∠BPC=∠AEB.∴∠BPC=60°.故为60°.24.已知两曲线参数方程分别为x=5cosθy=sinθ(0≤θ<π)和x=54t2y=t(t∈R),它们的交点坐标为______.答案:曲线参数方程x=5cosθy=sinθ(0≤θ<π)的直角坐标方程为:x25+y2=1;曲线x=54t2y=t(t∈R)的普通方程为:y2=45x;解方程组:x25+y2=1y2=45x得:x=1y=255∴它们的交点坐标为(1,255).故为:(1,255).25.若a,b∈R,求证:≤+.答案:证明略解析:证明

当|a+b|=0时,不等式显然成立.当|a+b|≠0时,由0<|a+b|≤|a|+|b|≥,所以=≤=≤+.26.若数据x1,x2,x3…xn的平均数.x=5,方差σ2=2,则数据3x1+1,3x2+1,3x3+1…,3xn+1的方差为______.答案:∵x1,x2,x3,…,xn的方差为2,∴3x1+1,3x2+1,3x3+1,…,3xn+1的方差是32×2=18.故为:18.27.在5件产品中,有3件一等品,2件二等品.从中任取2件.那么以710为概率的事件是()A.都不是一等品B.至少有一件二等品C.恰有一件一等品D.至少有一件一等品答案:5件产品中,有3件一等品和2件二等品,从中任取2件,从5件产品中任取2件,共有C52=10种结果,∵“任取的2件产品都不是一等品”只有1种情况,其概率是110;“任取的2件产品中至少有一件二等品”有C31C21+1种情况,其概率是710;“任取的2件产品中恰有一件一等品”有C31C21种情况,其概率是610;“任取的2件产品在至少有一件一等品”有C31C21+C32种情况,其概率是910;∴以710为概率的事件是“至少有一件二等品”.故为B.28.若事件与相互独立,且,则的值等于A.B.C.D.答案:B解析:事件“”表示的意义是事件与同时发生,因为二者相互独立,根据相互独立事件同时发生的概率公式得:.29.能较好地反映一组数据的离散程度的是()

A.众数

B.平均数

C.标准差

D.极差答案:C30.盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于______.答案:从中随机取出2个球,每个球被取到的可能性相同,是古典概型从中随机取出2个球,所有的取法共有C52=10所取出的2个球颜色不同,所有的取法有C31?C21=6由古典概型概率公式知P=610=35故为3531.把一枚硬币连续抛掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,则P(B|A)等于(

A.

B.

C.

D.答案:A32.由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的自然数有______.答案:由题意,一位数有:1,2,3;两位数有:12,21,23,32,13,31;三位数有:123,132,213,231,321,312故为:1,2,3,12,13,23,21,31,32,123,132,213,231,321,312.33.对于直线l的倾斜角α与斜率k,下列说法错误的是()

A.α的取值范围是[0°,180°)

B.k的取值范围是R

C.k=tanα

D.当α∈(90°,180°)时,α越大k越大答案:C34.已知M(-2,7)、N(10,-2),点P是线段MN上的点,且PN=-2PM,则P点的坐标为______.答案:设P(x,y),则PN=(10-x,-2-y),PM=(-2-x,7-y),∵PN=-2PM,∴10-x=-2(-2-x)-2-y=-2(7-y),∴x=2y=4∴P点的坐标为(2,4).故为:(2,4)35.A、B为球面上相异两点,则通过A、B两点可作球的大圆有()A.一个B.无穷多个C.零个D.一个或无穷多个答案:如果A,B两点为球面上的两极点(即球直径的两端点)则通过A、B两点可作球的无数个大圆如果A,B两点不是球面上的两极点(即球直径的两端点)则通过A、B两点可作球的一个大圆故选:D36.200辆汽车经过某一雷达地区,时速频率分布直方图如图所示,则时速不低于60km/h的汽车数量为

______辆.答案:时速不低于60km/h的汽车的频率为(0.028+0.01)×10=0.38∴时速不低于60km/h的汽车数量为200×0.38=76故为:7637.某校有学生1

200

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论