2023年安徽卫生健康职业学院高职单招(数学)试题库含答案解析_第1页
2023年安徽卫生健康职业学院高职单招(数学)试题库含答案解析_第2页
2023年安徽卫生健康职业学院高职单招(数学)试题库含答案解析_第3页
2023年安徽卫生健康职业学院高职单招(数学)试题库含答案解析_第4页
2023年安徽卫生健康职业学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年安徽卫生健康职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.已知x1>0,x1≠1,且xn+1=xn(x2n+3)3x2n+1,(n=1,2,…).试证:数列{xn}或者对任意自然数n都满足xn<xn+1,或者对任意自然数n都满足xn>xn+1.答案:证:首先,xn+1-xn=xn(x2n+3)3x2n+1-xn=2xn(1-x2n)3x2n+1,由于x1>0,由数列{xn}的定义可知xn>0,(n=1,2,…)所以,xn+1-xn与1-xn2的符号相同.①假定x1<1,我们用数学归纳法证明1-xn2>0(n∈N)显然,n=1时,1-x12>0设n=k时1-xk2>0,那么当n=k+1时1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2>0,因此,对一切自然数n都有1-xn2>0,从而对一切自然数n都有xn<xn+1②若x1>1,当n=1时,1-x12<0;设n=k时1-xk2<0,那么当n=k+1时1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2<0,因此,对一切自然数n都有1-xn2<0,从而对一切自然数n都有xn>xn+12.书架上有5本数学书,4本物理书,5本化学书,从中任取一本,不同的取法有()A.14B.25C.100D.40答案:由题意,∵书架上有5本数学书,4本物理书,5本化学书,∴从中任取一本,不同的取法有5+4+5=14种故选A.3.若图中的直线l1、l2、l3的斜率分别为k1、k2、k3,则()A.k1<k2<k3B.k2<k1<k3C.k3<k2<k1D.k1<k3<k2答案:因为直线的斜率是其倾斜角的正切值,当倾斜角大于90°小于180°时,斜率为负值,当倾斜角大于0°小于90°时斜率为正值,且正切函数在(0°,90°)上为增函数,由图象三条直线的倾斜角可知,k2<k1<k3.故选C.4.探测某片森林知道,可采伐的木材有10万立方米.设森林可采伐木材的年平均增长率为8%,则经过______年,可采伐的木材增加到40万立方米.答案:设经过n年可采伐本材达到40万立方米则有10×(1+8%)n=40即(1+8%)n=4故有n=log1.084,解得n≈19即经过19年,可采伐的木材增加到40万立方米故为195.某个命题与正整数n有关,如果当n=k(k∈N+)时命题成立,那么可推得当n=k+1时命题也成立.

现已知当n=7时该命题不成立,那么可推得()

A.当n=6时该命题不成立

B.当n=6时该命题成立

C.当n=8时该命题不成立

D.当n=8时该命题成立答案:A6.某程序框图如图所示,该程序运行后输出的k的值是()A.4B.5C.6D.7答案:根据流程图所示的顺序,程序的运行过程中各变量值变化如下表:是否继续循环

S

K循环前/0

0第一圈

1

1第二圈

3

2第三圈

11

3第四圈

20594第五圈

否∴最终输出结果k=4故为A7.如图是将二进制数11111(2)化为十进制数的一个程序框图,判断框内应填入的条件是()A.i≤5B.i≤4C.i>5D.i>4答案:首先将二进制数11111(2)化为十进制数,11111(2)=1×20+1×21+1×22+1×23+1×24=31,由框图对累加变量S和循环变量i的赋值S=1,i=1,i不满足判断框中的条件,执行S=1+2×S=1+2×1=3,i=1+1=2,i不满足条件,执行S=1+2×3=7,i=2+1=3,i不满足条件,执行S=1+2×7=15,i=3+1=4,i仍不满足条件,执行S=1+2×15=31,此时31是要输出的S值,说明i不满足判断框中的条件,由此可知,判断框中的条件应为i>4.故选D.8.在市场上供应的灯泡中,甲厂产品占70%,乙厂占30%,甲厂产品的合格率是95%,乙厂的合格率是80%,则从市场上买到一个甲厂生产的合格灯泡的概率是______.答案:由题意知本题是一个相互独立事件同时发生的概率,∵甲厂产品占70%,甲厂产品的合格率是95%,∴从市场上买到一个甲厂生产的合格灯泡的概率是0.7×0.95=0.665故为:0.6659.某地区教育主管部门为了对该地区模拟考试成绩进行分析,抽取了总成绩介于350分到650分之间的10000名学生成绩,并根据这10000名学生的总成绩画了样本的频率分布直方图.为了进一步分析学生的总成绩与各科成绩等方面的关系,要从这10000名学生中,再用分层抽样方法抽出200人作进一步调查,则总成绩在[400,500)内共抽出()

A.100人

B.90人

C.65人

D.50人

答案:B10.用秦九韶算法求多项式

在的值.答案:.解析:可根据秦九韶算法原理,将所给多项式改写,然后由内到外逐次计算即可.

而,所以有,,,,,.即.【名师指引】利用秦九韶算法计算多项式值关键是能正确地将所给多项式改写,然后由内到外逐次计算,由于后项计算需用到前项的结果,故应认真、细心,确保中间结果的准确性.11.如图所示的多面体,它的正视图为直角三角形,侧视图为矩形,俯视图为直角梯形(尺寸如图所示)

(1)求证:AE∥平面DCF;

(2)若M是AE的中点,AB=3,∠CEF=90°,求证:平面AEF⊥平面BMC.答案:(1)证法1:过点E作EG⊥CF交CF于G,连结DG,可得四边形BCGE为矩形,又四边形ABCD为矩形,所以AD=EG,从而四边形ADGE为平行四边形故AE∥DG

因为AE?平面DCF,DG?平面DCF,所以AE∥平面DCF

证法2:(面面平行的性质法)因为四边形BEFC为梯形,所以BE∥CF.又因为BE?平面DCF,CF?平面DCF,所以BE∥平面DCF.因为四边形ABCD为矩形,所以AB∥DC.同理可证AB∥平面DCF.又因为BE和AB是平面ABE内的两相交直线,所以平面ABE∥平面DCF.又因为AE?平面ABE,所以AE∥平面DCF.(2)在Rt△EFG中,∠CEF=90°,EG=3,EF=2.∴∠GEF=30°,GF=12EF=1.在RT△CEG中,∠CEG=60°,∴CG=EGtan60°=3,BE=3.∵AB=3,M是AE中点,∴BM⊥AE,由侧视图是矩形,俯视图是直角梯形,得BC⊥AB,BC⊥BE,∵AB∩BM=B,∴AE⊥平面BCM又∵AE?平面ACE,∴平面ACE⊥平面BCM.12.某初级中学领导采用系统抽样方法,从该校预备年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号,求得间隔数k==16,即每16人抽取一个人.在1~16中随机抽取一个数,如果抽到的是7,则从33~48这16个数中应取的数是(

A.40

B.39

C.38

D.37答案:B13.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()A.{3,5}B.{3,6}C.{3,7}D.{3,9}答案:因为A∩B={1,3,5,7,9}∩{0,3,6,9,12}={3,9}故选D14.已知空间四边形ABCD的对角线为AC、BD,设G是CD的中点,则+(+)等于()

A.

B.

C.

D.

答案:C15.中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()

A.

B.

C.

D.答案:D16.已知P为抛物线y2=4x上一点,设P到准线的距离为d1,P到点A(1,4)的距离为d2,则d1+d2的最小值为______.答案:∵y2=4x,焦点坐标为F(1,0)根据抛物线定义可知P到准线的距离为d1=|PF|d1+d2=|PF|+|PA|进而可知当A,P,F三点共线时,d1+d2的最小值=|AF|=4故为417.椭圆x=3cosθy=4sinθ的离心率是______.答案:∵x=3cosθy=4sinθ,∴(x3)2+(y4)2=cos2θ+sin2θ=1,即x29+y216=1,其中a2=16,b2=9,故c2=a2-b2=16-9=7(a>0,b>0,c>0),∴其离心率e=ca=74.故为:74.18.在吸烟与患肺病这两个分类变量的计算中,“若x2的观测值为6.635,我们有99%的把握认为吸烟与患肺病有关系”这句话的意思是指()

A.在100个吸烟的人中,必有99个人患肺病

B.有1%的可能性认为推理出现错误

C.若某人吸烟,则他有99%的可能性患有肺病

D.若某人患肺病,则99%是因为吸烟答案:B19.若直线l:ax+by=1与圆C:x2+y2=1有两个不同交点,则点P(a,b)与圆C的位置关系是(

A.点在圆上

B.点在圆内

C.点在圆外

D.不能确定答案:C20.下列命题错误的是(

)A.命题“若,则中至少有一个为零”的否定是:“若,则都不为零”。B.对于命题,使得;则是,均有。C.命题“若,则方程有实根”的逆否命题为:“若方程无实根,则”。D.“”是“”的充分不必要条件。答案:A解析:命题的否定是只否定结论,∴选A.21.在平面直角坐标系xOy中,若抛物线C:x2=2py(p>0)的焦点为F(q,1),则p+q=______.答案:抛物线C:x2=2py(p>0)的焦点坐标为(0,p2),又已知焦点为为F(q,1),∴q=0,p2=1,故p+q=2,故为2.22.在空间直角坐标系中,点,过点P作平面xOy的垂线PQ,则Q的坐标为()

A.

B.

C.

D.答案:D23.已知圆M的方程为:(x+3)2+y2=100及定点N(3,0),动点P在圆M上运动,线段PN的垂直平分线交圆M的半径MP于Q点,设点Q的轨迹为曲线C,则曲线C的方程是______.答案:连接QN,如图由已知,得|QN|=|QP|,所以|QM|+|QN|=|QM|+|QN|=|MP|=10又|MN|=6,10>6,根据椭圆的定义,点Q的轨迹是M,N为焦点,以10为长轴长的椭圆,所以2a=10,2c=6,所以b=4,所以,点Q的轨迹方程为:x225+y216=1故为:x225+y216=124.如图,F1,F2分别为椭圆x2a2+y2b2=1的左、右焦点,点P在椭圆上,△POF2是面积为3的正三角形,则b2的值是______.答案:∵△POF2是面积为3的正三角形,∴S=34|PF2|2=3,|PF2|=2.∴c=2,∵△PF1F2为直角三角形,∴a=3+1,故为23.25.将一枚质地均匀的硬币连续投掷4次,出现“2次正面朝上,2次反面朝上”和“3次正面朝上,1次反面朝上”的概率各是多少?答案:将一枚质地均匀的硬币连续投掷4次,出现“2次正面朝上,2次反面朝上”的概率p1=C24(12)2(12)2=38.将一枚质地均匀的硬币连续投掷4次,出现“3次正面朝上,1次反面朝上”的概率p2=C34(12)3?12=14.26.用反证法证明:若整系数一元二次方程ax2+bx+c=0(a≠0)有有理数根,那么b、c中至少有一个偶数时,下列假设正确的是()

A.假设a、b、c都是偶数

B.假设a、b、c都不是偶数

C.假设a、b、c至多有一个偶数

D.假设a、b、c至多有两个偶数答案:B27.下列关于算法的说法中正确的个数是()

①求解某一类问题的算法是唯一的;

②算法必须在有限步操作之后停止;

③算法的每一步操作必须是明确的,不能有歧义或模糊;

④算法执行后一定产生确定的结果.A.1B.2C.3D.4答案:由算法的概念可知:求解某一类问题的算法不是唯一的,故①不正确;算法是有限步,结果明确性,②④是正确的.对于③,算法的每一步操作必须是明确的,不能有歧义或模糊是正确的;故③正确.∴关于算法的说法中正确的个数是3.故选C.28.斜二测画法的规则是:

(1)在已知图形中建立直角坐标系xoy,画直观图

时,它们分别对应x′和y′轴,两轴交于点o′,使∠x′o′y′=______,它们确定的平面表示水平平面;

(2)

已知图形中平行于x轴或y轴的线段,在直观图中分别画成

______;

(3)已知图形中平行于x轴的线段的长度,在直观图中

______;平行于y轴的线段,在直观图中

______.答案:按照斜二测画法的规则填空故为:(1)45°或135°;(2)平行于x′轴和y′轴;(3)长度不变;长度减半29.先后2次抛掷一枚骰子,将得到的点数分别记为a,b.

(1)求直线ax+by+5=0与圆x2+y2=1相切的概率;

(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.答案:(1)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36.∵直线ax+by+c=0与圆x2+y2=1相切的充要条件是5a2+b2=1即:a2+b2=25,由于a,b∈{1,2,3,4,5,6}∴满足条件的情况只有a=3,b=4,c=5;或a=4,b=3,c=5两种情况.∴直线ax+by+c=0与圆x2+y2=1相切的概率是236=118(2)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36.∵三角形的一边长为5∴当a=1时,b=5,(1,5,5)1种当a=2时,b=5,(2,5,5)1种当a=3时,b=3,5,(3,3,5),(3,5,5)2种当a=4时,b=4,5,(4,4,5),(4,5,5)2种当a=5时,b=1,2,3,4,5,6,(5,1,5),(5,2,5),(5,3,5),(5,4,5),(5,5,5),(5,6,5)6种当a=6时,b=5,6,(6,5,5),(6,6,5)2种故满足条件的不同情况共有14种故三条线段能围成不同的等腰三角形的概率为1436=718.30.已知点A(1-t,1-t,t),B(2,t,t),则A、B两点距离的最小值为()

A.

B.

C.

D.2答案:A31.已知随机变量ξ的数学期望Eξ=0.05且η=5ξ+1,则Eη等于()

A.1.15

B.1.25

C.0.75

D.2.5答案:B32.已知f(x)=,若f(x0)>1,则x0的取值范围是()

A.(0,1)

B.(-∞,0)∪(0,+∞)

C.(-∞,0)∪(1,+∞)

D.(1,+∞)答案:C33.已知F1=i+2j+3k,F2=2i+3j-k,F3=3i-4j+5k,若F1,F2,F3共同作用于一物体上,使物体从点M(1,-2,1)移动到N(3,1,2),则合力所作的功是______.答案:由题意可得F1=(1,2,3)F2=(2,3,-1),F3=(3,-4,5),故合力F=F1+F2+F3=(6,1,7),位移S=MN=(3,1,2)-(1,-2,1)=(2,3,1),故合力所作的功W=F•S=6×2+1×3+7×1=22故为:2234.如图所示,PD⊥平面ABCD,且四边形ABCD为正方形,AB=2,E是PB的中点,

cos〈,〉=.

(1)建立适当的空间坐标系,写出点E的坐标;

(2)在平面PAD内求一点F,使EF⊥平面PCB.答案:(1)点E的坐标是(1,1,1)(2)F是AD的中点时满足EF⊥平面PCB解析:(1)如图所示,以DA、DC、DP所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0)、B(2,2,0)、C(0,2,0),设P(0,0,2m),则E(1,1,m),∴=(-1,1,m),=(0,0,2m).∴cos〈,〉==.解得m=1,∴点E的坐标是(1,1,1).(2)∵F∈平面PAD,∴可设F(x,0,z).则=(x-1,-1,z-1),又=(2,0,0),=(0,2,-2)∵EF⊥平面PCB∴⊥,且⊥即∴∴,∴F点的坐标为(1,0,0)即点F是AD的中点时满足EF⊥平面PCB.35.已知直线l1:(k-3)x+(4-k)y+1=0,与l2:2(k-3)x-2y+3=0,平行,则k的值是______.答案:当k=3时两条直线平行,当k≠3时有2=-24-k≠3

所以

k=5故为:3或5.36.不等式|3x-2|>4的解集是______.答案:由|3x-2|>4可得

3x-2>4

或3x-2<-4,∴x>2或x<-23.故为:(-∞,-23)∪(2,+∞).37.已知圆的极坐标方程是ρ=2cosθ,那么该圆的直角坐标方程是()

A.(x-1)2+y2=1

B.x2+(y-1)2=1

C.(x+1)2+y2=1

D.x2+y2=2答案:A38.已知D是△ABC所在平面内一点,,则()

A.

B.

C.=

D.答案:A39.若向量=(2,-3,1),=(2,0,3),=(0,2,2),则(+)=()

A.4

B.15

C.7

D.3答案:D40.一圆台上底半径为5cm,下底半径为10cm,母线AB长为20cm,其中A在上底面上,B在下底面上,从AB中点M,拉一条绳子,绕圆台的侧面一周转到B点,则这条绳子最短长为______cm.答案:画出圆台的侧面展开图,并还原成圆锥展开的扇形,且设扇形的圆心为O.有图得:所求的最短距离是MB',设OA=R,圆心角是α,则由题意知,10π=αR

①,20π=α(20+R)

②,由①②解得,α=π2,R=20,∴OM=30,OB'=40,则MB'=50cm.故为:50cm.41.三个数a=60.5,b=0.56,c=log0.56的大小顺序为______.(按大到小顺序)答案:∵a=60.5>60=1,0<b=0.56<0.50=1,c=log0.56<log0.51=0.∴a>b>c.故为a>b>c.42.从椭圆

x2a2+y2b2=1(a>b>0)上一点P向x轴作垂线,垂足恰为左焦点F1,又点A是椭圆与x轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且AB∥OP,|F1A|=10+5,求椭圆的方程.答案:∵AB∥OP∴PF1F1O=BOOA?PF1=bca又∵PF1⊥x轴∴c2a2+y2b2=1?y=b2a∴b=c由a+c=10+5b=ca2=b2+c2解得:a=10b=5c=5∴椭圆方程为x210+y25=1.43.已知,向量与向量的夹角是,则x的值为()

A.±3

B.±

C.±9

D.3答案:D44.若e1,e2是两个不共线的向量,已知AB=2e1+ke2,CB=e1+3e2,CD=2e1-e2,若A,B,D三点共线,则k=______.答案:BD=CD-CB=(2e1-e2)-(e1+3e2)=2e1-4e2因为A,B,D三点共线,所以AB=kBD,已知AB=2e1+ke2,BD=2e1-4e2所以k=-4故为:-445.平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A.B为焦点的椭圆”,那么()A.甲是乙成立的充分不必要条件B.甲是乙成立的必要不充分条件C.甲是乙成立的充要条件D.甲是乙成立的非充分非必要条件答案:命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A.B为焦点的椭圆∵当一个动点到两个顶点距离之和等于定值时,再加上这个和大于两个定点之间的距离,可以得到动点的轨迹是椭圆,没有加上的条件不一定推出,而点P的轨迹是以A.B为焦点的椭圆,一定能够推出|PA|+|PB|是定值,∴甲是乙成立的必要不充分条件故选B.46.平面α外一点P到平面α内的四边形的四条边的距离都相等,且P在α内的射影在四边形内部,则四边形是()

A.梯形

B.圆外切四边形

C.圆内接四边

D.任意四边形答案:B47.设k>1,则关于x,y的方程(1-k)x2+y2=k2-1所表示的曲线是()

A.长轴在x轴上的椭圆

B.长轴在y轴上的椭圆

C.实轴在x轴上的双曲线

D.实轴在y轴上的双曲线答案:D48.已知向量a与向量b的夹角为120°,若向量c=a+b,且a⊥c,则|a||b|的值为______.答案:由题意可知,∵a⊥c,∴a?c=a?(a+b)=a2+a?b=0即|a|2+|a||b|cos120°=0,故|a|2=12|a||b|,故|a||b|=12.故为:1249.如图,AB,AC分别是⊙O的切线和割线,且∠C=45°,∠BDA=60°,CD=6,则切线AB的长是______.答案:过点A作AM⊥BD与点M.∵AB为圆O的切线∴∠ABD=∠C=45°∵∠BDA=60°∴∠BAD=75°,∠DAM=30°,∠BAM=45°设AB=x,则AM=22x,在直角△AMD中,AD=63x由切割线定理得:AB2=AD?ACx2=63x(63x+6)解得:x1=6,x2=0(舍去)故AB=6.故是:6.50.如图给出了一个算法程序框图,该算法程序框图的功能是()A.求a,b,c三数的最大数B.求a,b,c三数的最小数C.将a,b,c按从小到大排列D.将a,b,c按从大到小排列答案:逐步分析框图中的各框语句的功能,第一个条件结构是比较a,b的大小,并将a,b中的较小值保存在变量a中,第二个条件结构是比较a,c的大小,并将a,c中的较小值保存在变量a中,故变量a的值最终为a,b,c中的最小值.由此程序的功能为求a,b,c三个数的最小数.故选B第2卷一.综合题(共50题)1.在画两个变量的散点图时,下面哪个叙述是正确的(

A.预报变量x轴上,解释变量y轴上

B.解释变量x轴上,预报变量y轴上

C.可以选择两个变量中任意一个变量x轴上

D.可以选择两个变量中任意一个变量y轴上答案:B2.若方程sin2x+4sinx+m=0有实数解,则m的取值范围是(

A、R

B、(-∞,-5]∪[3,+∞)

C、(-5,3)

D、[-5,3]答案:D3.在平面直角坐标系xoy中,曲线C1的参数方程为x=4cosθy=2sinθ(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,得曲线C2的极坐标方程为ρ=2cosθ-4sinθ(ρ>0).

(Ⅰ)化曲线C1、C2的方程为普通方程,并说明它们分别表示什么曲线;

(Ⅱ)设曲线C1与x轴的一个交点的坐标为P(m,0)(m>0),经过点P作曲线C2的切线l,求切线l的方程.答案:(Ⅰ)曲线C1:x216+y24=1;曲线C2:(x-1)2+(y+2)2=5;(3分)曲线C1为中心是坐标原点,焦点在x轴上,长半轴长是4,短半轴长是2的椭圆;曲线C2为圆心为(1,-2),半径为5的圆(2分)(Ⅱ)曲线C1:x216+y24=1与x轴的交点坐标为(-4,0)和(4,0),因为m>0,所以点P的坐标为(4,0),(2分)显然切线l的斜率存在,设为k,则切线l的方程为y=k(x-4),由曲线C2为圆心为(1,-2),半径为5的圆得|k+2-4k|k2+1=5,解得k=3±102,所以切线l的方程为y=3±102(x-4)(3分)4.已知a=(1,0),b=(m,m)(m>0),则<a,b>=______.答案:∵b=(m,m)(m>0),∴b与第一象限的角平分线同向,且由原点指向远处,而a=(1,0)同横轴的正方向同向,∴<a,b>=45°,故为:45°5.阅读如图所示的程序框,若输入的n是100,则输出的变量S的值是()A.5051B.5050C.5049D.5048答案:根据流程图所示的顺序,该程序的作用是累加并输出S=100+99+98+…+2,∵100+99+98+…+2=5049,故选C.6.若f(x)是定义在R上的函数,满足对任意的x,y∈R,都有f(x+y)=f(x)f(y)成立,且f(2)=3,则f(8)=______.答案:由题意可知:对任意的x,y∈R,都有f(x+y)=f(x)f(y)成立,所以x=y=2,可知f(4)=f(2+2)=f(2)?f(2),所以f(4)=9;令x=y=4,可知f(8)=f(4+4)=f(4)?f(4)=92=81.故为:81.7.(几何证明选讲选做题)

如图,已知AB是⊙O的一条弦,点P为AB上一点,PC⊥OP,PC交⊙O于C,若AP=4,PB=2,则PC的长是______.答案:∵AB是⊙O的一条弦,点P为AB上一点,PC⊥OP,PC交⊙O于C,∴AP×PB=PC2,∵AP=4,PB=2,∴PC2=8,解得PC=22.故为:22.8.把4名男生和4名女生排成一排,女生要排在一起,不同排法的种数为()

A.A88

B.A55A44

C.A44A44

D.A85答案:B9.袋中有5个小球(3白2黑),现从袋中每次取一个球,不放回地抽取两次,则在第一次取到白球的条件下,第二次取到白球的概率是()

A.

B.

C.

D.答案:C10.下列给出的输入语句、输出语句和赋值语句

(1)输出语句INPUT

a;b;c

(2)输入语句INPUT

x=3

(3)赋值语句3=B

(4)赋值语句A=B=2

则其中正确的个数是()

A.0个

B.1个

C.2个

D.3个答案:A11.已知f(x)是定义域为正整数集的函数,对于定义域内任意的k,若f(k)≥k2成立,则f(k+1)≥(k+1)2成立,下列命题成立的是()A.若f(3)≥9成立,则对于任意k≥1,均有f(k)≥k2成立;B.若f(4)≥16成立,则对于任意的k≥4,均有f(k)<k2成立;C.若f(7)≥49成立,则对于任意的k<7,均有f(k)<k2成立;D.若f(4)=25成立,则对于任意的k≥4,均有f(k)≥k2成立答案:对A,当k=1或2时,不一定有f(k)≥k2成立;对B,应有f(k)≥k2成立;对C,只能得出:对于任意的k≥7,均有f(k)≥k2成立,不能得出:任意的k<7,均有f(k)<k2成立;对D,∵f(4)=25≥16,∴对于任意的k≥4,均有f(k)≥k2成立.故选D12.在如图所示的茎叶图中,甲、乙两组数据的中位数分别是______.答案:由茎叶图可得甲组共有9个数据中位数为45乙组共9个数据中位数为46故为45、4613.已知三点A(1,2),B(2,-1),C(2,2),E,F为线段BC的三等分点,则AE•AF=______.答案:∵A(1,2),B(2,-1),C(2,2),∴AB=(1,-3),BC=(0,3),AE=AB+13BC=(1,-2),AF=AB+23BC=(1,-1),∴AE•AF=1×1+(-2)×(-1)=3.故为:314.mx+ny=1(mn≠0)与两坐标轴围成的三角形面积为______.答案:由mx+ny=1(mn≠0),得x1m+y1n=1,所以mx+ny=1(mn≠0)在两坐标轴上的截距分别为1m,1n.则mx+ny=1(mn≠0)与两坐标轴围成的三角形面积为12|mn|.故为12|mn|.15.已知随机变量ξ~N(3,22),若ξ=2η+3,则Dη=()

A.0

B.1

C.2

D.4答案:B16.三行三列的方阵.a11a12

a13a21a22

a23a31a32

a33.中有9个数aji(i=1,2,3;j=1,2,3),从中任取三个数,则它们不同行且不同列的概率是()A.37B.47C.114D.1314答案:从给出的9个数中任取3个数,共有C39;从三行三列的方阵中任取三个数,使它们不同行且不同列:从第一行中任取一个数有C13种方法,则第二行只能从另外两列中的两个数任取一个有C12种方法,第三行只能从剩下的一列中取即可有1中方法,∴共有C13×C12×C11=6.∴从三行三列的方阵中任取三个数,则它们不同行且同列的概率P=6C39=114.故选C.17.(理)已知向量=(3,5,-1),=(2,2,3),=(4,-1,-3),则向量2-3+4的坐标为()

A.(16,0,-23)

B.(28,0,-23)

C.(16,-4,-1)

D.(0,0,9)答案:A18.曲线x2+ay+2y+2=0经过点(2,-1),则a=______.答案:由题意,∵曲线x2+ay+2y+2=0经过点(2,-1),∴22-a-2+2=0∴a=4故为419.x+y+z=1,则2x2+3y2+z2的最小值为()

A.1

B.

C.

D.答案:C20.已知随机变量X的分布列为:P(X=k)=,k=1,2,…,则P(2<X≤4)等于()

A.

B.

C.

D.答案:A21.四面体ABCD中,设M是CD的中点,则化简的结果是()

A.

B.

C.

D.答案:A22.已知点P在曲线C1:x216-y29=1上,点Q在曲线C2:(x-5)2+y2=1上,点R在曲线C3:(x+5)2+y2=1上,则|PQ|-|PR|的最大值是()A.6B.8C.10D.12答案:由双曲线的知识可知:C1x216-y29=1的两个焦点分别是F1(-5,0)与F2(5,0),且|PF1|+|PF2|=8而这两点正好是两圆(x+5)2+y2=1和(x-5)2+y2=1的圆心,两圆(x+5)2+y2=4和(x-5)2+y2=1的半径分别是r1=1,r2=1,∴|PQ|max=|PF1|+1,|PR|min=|PF2|-1,∴|PQ|-|PR|的最大值为:(|PF1|+1)-(|PF2|-1)=|PF1|+|PF2|+2=8+2=10,故选C23.如图是用来求2+32+43+54+…+101100的计算程序,请补充完整:______.

答案:2+32+43+54+…+101100=(1+1)+(1+12)+(1+13)+…+(1+1100)故循环体中应是S=S+(1+1i)故为:S=S+(1+1i)24.若向量n与直线l垂直,则称向量n为直线l的法向量.直线x+2y+3=0的一个法向量为()

A.(2,-1)

B.(1,-2)

C.(2,1)

D.(1,2)答案:D25.某细胞在培养过程中,每15分钟分裂一次(由1个细胞分裂成2个),则经过两个小时后,1个这样的细胞可以分裂成______个.答案:由于每15分钟分裂一次,则两个小时共分裂8次.一个这样的细胞经过一次分裂后,由1个分裂成2个;经过2次分裂后,由1个分裂成22个;…经过8次分裂后,由1个分裂成28个.∴1个这样的细胞经过两个小时后,共分裂成28个,即256个.故为:25626.已知=(-3,2,5),=(1,x,-1),且=2,则x的值为()

A.3

B.4

C.5

D.6答案:C27.设P1(4,-3),P2(-2,6),且P在P1P2的延长线上,使||=2||,则点P的坐标

()

A.(-8,15)

B.(0,3)

C.(-,)

D.(1,)答案:A28.已知a=(1,-2,4),b=(1,0,3),c=(0,0,2).求

(1)a•(b+c);

(2)4a-b+2c.答案:解(1)∵b+c=(1,0,5),∴a•(b+c)=1×1+(-2)×0+4×5=21.(2)4a-b+2c=(4,-8,16)-(1,0,3)+(0,0,4)=(3,-8,17).29.若直线的参数方程为(t为参数),则该直线的斜率为()

A.

B.2

C.1

D.-1答案:D30.设集合A={1,2},={2,3},C={2,3,4},则(A∩B)∪C=______.答案:由题得:A∩B={2},又因为C={2,3,4},(故A∩B)∪C={2,3,4}.故为

{2,3,4}.31.直线l只经过第一、三、四象限,则直线l的斜率k()

A.大于零

B.小于零

C.大于零或小于零

D.以上结论都有可能答案:A32.已知P(B|A)=,P(A)=,则P(AB)=()

A.

B.

C.

D.答案:D33.方程x2+ky2=2表示焦点在y轴的椭圆,那么实数k的取值范围是

______.答案:椭圆方程化为x22+y22k=1.焦点在y轴上,则2k>2,即k<1.又k>0,∴0<k<1.故为:0<k<134.已知空间四边形ABCD中,M、G分别为BC、CD的中点,则等于()

A.

B.

C.

D.

答案:A35.某总体容量为M,其中带有标记的有N个,现用简单随机抽样方法从中抽出一个容量为m的样本,则抽取的m个个体中带有标记的个数估计为()A.mNMB.mMNC.MNmD.N答案:由题意知,总体中带有标记的鱼所占比例是NM,故样本中带有标记的个数估计为mNM,故选A.36.在下列条件中,使M与不共线三点A、B、C,一定共面的是

[

]答案:C37.已知直线a、b、c,其中a、b是异面直线,c∥a,b与c不相交.用反证法证明b、c是异面直线.答案:证明:假设b、c不是异面直线,则b、c共面.∵b与c不相交,∴b∥c.又∵c∥a,∴根据公理4可知b∥a.这与已知a、b是异面直线相矛盾.故b、c是异面直线.38.某商人将彩电先按原价提高40%,然后在广告中写上“大酬宾,八折优惠”,结果是每台彩电比原价多赚了270元,则每台彩电原价是______元.答案:设每台彩电的原价是x元,则有:(1+40%)x×0.8-x=270,解得:x=2250,故为:2250.39.下列函数中,与函数y=x(x≥0)有相同图象的一个是()A.y=x2B.y=(x)2C.y=3x3D.y=x2x答案:一个函数与函数y=x

(x≥0)有相同图象时,这两个函数应是同一个函数.A中的函数和函数y=x

(x≥0)的值域不同,故不是同一个函数.B中的函数和函数y=x

(x≥0)具有相同的定义域、值域、对应关系,故是同一个函数.C中的函数和函数y=x

(x≥0)的值域不同,故不是同一个函数.D中的函数和函数y=x

(x≥0)的定义域不同,故不是同一个函数.综上,只有B中的函数和函数y=x

(x≥0)是同一个函数,具有相同的图象,故选B.40.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是()A.甲B.乙C.丙D.丁答案:若甲是获奖的歌手,则都说假话,不合题意.若乙是获奖的歌手,则甲、乙、丁都说真话,丙说假话,不符合题意.若丁是获奖的歌手,则甲、丁、丙都说假话,乙说真话,不符合题意.故获奖的歌手是丙故先C41.已知随机变量ξ服从正态分布N(2,σ2),且P(ξ<0)=0.2,则P(ξ>4)=()

A.0.6

B.0.4

C.0.3

D.0.2答案:D42.

如图,已知PA为⊙O的切线,PBC为⊙O的割线,PA=6,PB=BC,⊙O的半径OC=5,那么弦BC的弦心距OM=()

A.4

B.3

C.5

D.6

答案:A43.已知A(3,-2),B(-5,4),则以AB为直径的圆的方程是()A.(x-1)2+(y+1)2=25B.(x+1)2+(y-1)2=25C.(x-1)2+(y+1)2=100D.(x+1)2+(y-1)2=100答案:∵A(3,-2),B(-5,4),∴以AB为直径的圆的圆心为(-1,1),半径r=(-1-3)2+(1+2)2=5,∴圆的方程为(x+1)2+(y-1)2=25故选B.44.已知直线过点A(2,0),且平行于y轴,方程:|x|=2,则(

A.l是方程|x|=2的曲线

B.|x|=2是l的方程

C.l上每一点的坐标都是方程|x|=2的解

D.以方程|x|=2的解(x,y)为坐标的点都在l上答案:C45.如图,AB是圆O的直径,CD是圆O的弦,AB与CD交于E点,且AE:EB=3:1、CE:ED=1:1,CD=83,则直径AB的长为______.答案:由CE:ED=1:1,CD=83,∴CE=ED=43由相交弦定理可得AE?EB=CE?ED及AE:EB=3:1∴3EB2=43?43=48解得EB=4,AE=12∴AB=AE+EB=16故为:1646.有一段“三段论”推理是这样的:对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点,因为函数f(x)=x3在x=0处的导数值f'(0)=0,所以,x=0是函数f(x)=x3的极值点.以上推理中()

A.大前提错误

B.小前提错误

C.推理形式错误

D.结论正确答案:A47.(1)求过两直线l1:7x-8y-1=0和l2:2x+17y+9=0的交点,且平行于直线2x-y+7=0的直线方程.

(2)求点A(--2,3)关于直线l:3x-y-1=0对称的点B的坐标.答案:(1)联立两条直线的方程可得:7x-8y-1=02x+17y+9=0,解得x=-1127,y=-1327所以l1与l2交点坐标是(-1127,-1327).(2)设与直线2x-y+7=0平行的直线l方程为2x-y+c=0因为直线l过l1与l2交点(-1127,-1327).所以c=13所以直线l的方程为6x-3y+1=0.点P(-2,3)关于直线3x-y-1=0的对称点Q的坐标(a,b),则b-3a+2×3=-1,且3×a-22-b+32-1=0,解得a=10且b=-1,对称点的坐标(10,-1)48.已知P:2+2=5,Q:3>2,则下列判断错误的是()A.“P或Q”为真,“非Q”为假B.“P且Q”为假,“非P”为真C.“P且Q”为假,“非P”为假D.“P且Q”为假,“P或Q”为真答案:∵P:2+2=5,假;Q:3>2,真;∴“非P”为真,“非Q”为假,∴“P或Q”为真,“P且Q”为假,∴A,B,D均正确;C错误.故选C.49.已知集合A={x|x>1},则(CRA)∩N的子集有()A.1个B.2个C.4个D.8个答案:∵集合A={x|x>1},∴CRA={x|x≤1},∴(CRA)∩N={0,1},∴(CRA)∩N的子集有22=4个,故选C.50.整数630的正约数(包括1和630)共有______个.答案:首先将630分解质因数630=2×32×5×7;然后注意到每一因数可出现的次幂数,如2可有20,21两种情况,3有30,31,32三种情况,5有50,51两种情况,7有70,71两种情况,按分步计数原理,整数630的正约数(包括1和630)共有2×3×2×2=24个.故为:24.第3卷一.综合题(共50题)1.某工厂生产的产品,用速度恒定的传送带将产品送入包装车间之前,质检员每隔3分钟从传送带上是特定位置取一件产品进行检测,这种抽样方法是()

A.简单随机抽样

B.系统抽样

C.分层抽样

D.其它抽样方法答案:B2.将n2个正整数1,2,3,…,n2填入n×n方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n阶幻方.记f(n)为n阶幻方对角线的和,如右表就是一个3阶幻方,可知f(3)=15,则f(4)=()

816357492A.32B.33C.34D.35答案:由等差数列得前n项和公式可得,所有数之和S=1+2+3+…+42=16?(1+16)2=136,所以,f(4)=1364=34,故选C.3.如图是一个方形迷宫,甲、乙两人分别位于迷宫的A、B两处,两人同时以每一分钟一格的速度向东、西、南、北四个方向行走,已知甲向东、西行走的概率都为14,向南、北行走的概率为13和p,乙向东、西、南、北四个方向行走的概率均为q

(1)p和q的值;

(2)问最少几分钟,甲、乙二人相遇?并求出最短时间内可以相遇的概率.答案:(1)∵14+14+13+p=1,∴p=16,∵4q=1,∴q=14(2)t=2甲、乙两人可以相遇(如图,在C、D、E三处相遇)

设在C、D、E三处相遇的概率分别为PC、PD、PE,则:PC=(16×16)×(14×14)=1576PD=2(16×14)×2(14×14)=196PE=(14×14)×(14×14)=1256PC+PD+PE=372304即所求的概率为3723044.在极坐标系中,过点p(3,)且垂直于极轴的直线方程为()

A.Pcosθ=

B.Psinθ=

C.P=cosθ

D.P=sinθ答案:A5.已知动点P(x,y)满足(x+2)2+y2-(x-2)2+y2=2,则动点P的轨迹是______.答案:∵(x+2)2+y2-(x-2)2+y2=2,即动点P(x,y)到两定点(-2,0),(2,0)的距离之差等于2,由双曲线定义知动点P的轨迹是双曲线的一支(右支).:双曲线的一支(右支).6.已知在一个二阶矩阵M对应变换的作用下,点A(1,2)变成了点A′(7,10),点B(2,0)变成了点B′(2,4),求矩阵M.答案:设M=abcd,则abcd12=710,abcd20=24,(4分)即a+2b=7c+2d=102a=22c=4,解得a=1b=3c=2d=4(8分)所以M=1234.(10分)7.已知两直线a1x+b1y+1=0和a2x+b2y+1=0的交点为P(2,3),求过两点Q1(a1,b1)、Q2(a2,b2)(a1≠a2)的直线方程.答案:∵P(2,3)在已知直线上,2a1+3b1+1=0,2a2+3b2+1=0.∴2(a1-a2)+3(b1-b2)=0,即b1-b2a1-a2=-23.∴所求直线方程为y-b1=-23(x-a1).∴2x+3y-(2a1+3b1)=0,即2x+3y+1=0.8.列举两种证明两个三角形相似的方法.答案:三边对应成比例,两个三角形相似,两边对应成比例且夹角相等,两个三角形相似.9.设双曲线的渐近线为:y=±32x,则双曲线的离心率为______.答案:由题意ba=32或ab=32,∴e=ca=132或133,故为132,133.10.已知一直线斜率为3,且过A(3,4),B(x,7)两点,则x的值为()

A.4

B.12

C.-6

D.3答案:A11.某海域内有一孤岛,岛四周的海平面(视为平面)上有一浅水区(含边界),其边界是长轴长为2a,短轴长为2b的椭圆,已知岛上甲、乙导航灯的海拔高度分别为h1、h2,且两个导航灯在海平面上的投影恰好落在椭圆的两个焦点上,现有船只经过该海域(船只的大小忽略不计),在船上测得甲、乙导航灯的仰角分别为θ1、θ2,那么船只已进入该浅水区的判别条件是______.答案:依题意,|MF1|+|MF2|≤2a?h1?cotθ1+h2?cotθ2≤2a;故为:h1?cotθ1+h2?cotθ2≤2a12.α为第一象限角是sinαcosα>0的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:若α为第一象限角,则sinα>0,cosα>0,所以sinαcosα>0,成立.若sinαcosα>0,则①sinα>0,cosα>0,此时α为第一象限角.或②sinα<0,cosα<0,此时α为第三象限角.所以α为第一象限角是sinαcosα>0的充分不必要条件.故选A.13.在空间直角坐标系中,点,过点P作平面xOy的垂线PQ,则Q的坐标为()

A.

B.

C.

D.答案:D14.

若向量

=(3,2),=(0,-1),=(-1,2),则向量2-的坐标坐标是(

A.(3,-4)

B.(-3,4)

C.(3,4)

D.(-3,-4)答案:D15.i是虚数单位,若(3+5i)x+(2-i)y=17-2i,则x、y的值分别为()

A.7,1

B.1,7

C.1,-7

D.-1,7答案:B16.已知:如图,CD是⊙O的直径,AE切⊙O于点B,DC的延长线交AB于点A,∠A=20°,则

∠DBE=______.答案:连接BC,∵CD是⊙O的直径,∴∠CBD=90°,∵AE是⊙O的切线,∴∠DBE=∠1,∠2=∠D;又∵∠1+∠D=90°,即∠1+∠2=90°---(1),∠A+∠2=∠1----(2),(1)-(2)得∠1=55°即∠DBE=55°.故为:∠DBE=55°.17.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()

A.10种

B.20种

C.25种

D.32种答案:D18.点B是点A(1,2,3)在坐标平面yOz内的正投影,则|OB|等于()

A.

B.

C.

D.答案:B19.已知矩形ABCD,R、P分别在边CD、BC上,E、F分别为AP、PR的中点,当P在BC上由B向C运动时,点R在CD上固定不变,设BP=x,EF=y,那么下列结论中正确的是()A.y是x的增函数B.y是x的减函数C.y随x先增大后减小D.无论x怎样变化,y是常数答案:连接AR,如图所示:由于点R在CD上固定不变,故AR的长为定值又∵E、F分别为AP、PR的中点,∴EF为△APR的中位线,则EF=12AR为定值故无论x怎样变化,y是常数故选D20.已知集合M={2,a,b},N={2a,2,b2}且M=N.求a、b的值.答案:由M=N及集合中元素的互异性,得a=2ab=b2

①或a=b2b=2a

②解①得:a=0b=1或a=0b=0,解②得:a=14b=12,当a=0b=0时,违背了集合中元素的互异性,所以舍去,故a、b的值为a=0b=1或a=14b=12.21.选修4-4:坐标系与参数方程

已知极点O与原点重合,极轴与x轴的正半轴重合.点A,B的极坐标分别为(2,π),(22,π4),曲线C的参数方程为答案:(Ⅰ)S△AOB=12×2×222.某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30min抽取一包产品,称其重量,分别记录抽查数据如下:

甲:86、72、92、78、77;

乙:82、91、78、95、88

(1)这种抽样方法是哪一种?

(2)将这两组数据用茎叶图表示;

(3)将两组数据比较,说明哪个车间产品较稳定.答案:(1)因为间隔时间相同,故是系统抽样.(2)茎叶图如下:.(3)因为.x甲=15(86+72+92+78+77)=81,.x乙=15(82+92+78+95+88)=87,所以s甲2=15(52+92+92+72+42)=50.4,s乙2=15(52+52+92+82+12)=39.2,而s甲2>s乙2,所以乙车间产品较稳定.23.在空间四边形OABC中,OA+AB-CB等于()A.OAB.ABC.OCD.AC答案:根据向量的加法、减法法则,得OA+AB-CB=OB-CB=OB+BC=OC.故选C.24.直线kx-y=k-1与直线ky=x+2k的交点在第二象限内,则k的取值范围是

______.答案:联立两直线方程得kx-y=k-1①ky=x+2k②,由②得y=x+2kk③,把③代入①得:kx-x+2kk=k-1,当k+1≠0即k≠-1时,解得x=kk-1,把x=kk-1代入③得到y=2k-1k-1,所以交点坐标为(kk-1,2k-1k-1)因为直线kx-y=k-1与直线ky=x+2k的交点在第二象限内,得kk-1<02k-1k-1>

0解得0<k<1,k>1或k<12,所以不等式组的解集为0<k<12则k的取值范围是0<k<12故为:0<k<1225.今天为星期六,则今天后的第22010天是()A.星期一B.星期二C.星期四D.星期日答案:∵22010=8670=(7+1)670=C6700×7670×10+C6701×7669×11+C6702×7668×12+…+C6702010×70×1670∴22010除7的余数是1故今天为星期六,则今天后的第22010天是星期日故选D26.某班从6名班干部(其中男生4人,女生2人)中选3人参加学校学生会的干部竞选.

(1)设所选3人中女生人数为ξ,求ξ的分布列及数学期望;

(2)在男生甲被选中的情况下,求女生乙也被选中的概率.答案:(1)ξ的所有可能取值为0,1,2.依题意,得P(ξ=0)=C34C36=15,P(ξ=1)=C24C12C36=35,P(ξ=2)=C14C22C36=15.∴ξ的分布列为ξ012P153515∴Eξ=0×15+1×35+2×15=1.(2)设“男生甲被选中的情况下,女生乙也被选中”为事件C,“男生甲被选中”为事件A,“女生乙被选中”为事件B从4个男生、2个女生中选3人,男生甲被选中的种数为n(A)=C52=10,男生甲被选中,女生乙也被选中的种数为n(AB)=C41=4,∴P(C)=n(AB)n(A)=C14C25=410=25故在男生甲被选中的情况下,女生乙也被选中的概率为25.27.设P,Q为△ABC内的两点,且AP=mAB+nAC

(m,n>0)AQ=pAB+qAC

(p,q>0),则△ABP的面积与△ABQ的面积之比为______.答案:设P到边AB的距离为h1,Q到边AB的距离为h2,则△ABP的面积与△ABQ的面积之比为h1h2,设AB边上的单位法向量为e,AB?e=0,则h1=|AP?e|=|(mAB+nAC)?e|=|m?AB?e+nAC?e|=|nAC?e|,同理可得h2=|qAC?e|,∴h1h2=|nq|=nq,故为n:q.28.下列说法中正确的是()

A.以直角三角形的一边为轴旋转所得的旋转体是圆锥

B.以直角梯形的一腰为轴旋转所得的旋转体是圆台

C.圆柱、圆锥、圆台的底面都是圆

D.圆锥侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的底面圆的半径答案:C29.如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若PB=1,PD=3,则BCAD的值为______.答案:因为A,B,C,D四点共圆,所以∠DAB=∠PCB,∠CDA=∠PBC,因为∠P为公共角,所以△PBC∽△PAD,所以BCAD=PBPD=13.故为:13.30.在边长为1的正方形ABCD中,若AB=a,BC=b,AC=c.则|a+b+2c|的值是______.答案:由题意可得|a|=|b|=1,|c|=2,a+

b=c,∴|a+b+2c|=|3c|=32,故为32.31.AB是圆O的直径,EF切圆O于C,AD⊥EF于D,AD=2,AB=6,则AC长为()

A.

B.3

C.2

D.2答案:A32.曲线x2+ay+2y+2=0经过点(2,-1),则a=______.答案:由题意,∵曲

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论