版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年安徽中医药高等专科学校高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.对变量x、y有观测数据(xi,yi)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(ui,vi)(i=1,2,…,10),得散点图2.由这两个散点图可以判断()
A.变量x与y正相关,u与v正相关
B.变量x与y正相关,u与v负相关
C.变量x与y负相关,u与v正相关
D.变量x与y负相关,u与v负相关答案:C2.已知随机变量ξ服从正态分布N(2,0.2),P(ξ≤4)=0.84,则P(ξ≤0)等于()A.0.16B.0.32C.0.68D.0.84答案:∵随机变量ξ服从正态分布N(2,0.2),μ=2,∴p(ξ≤0)=p(ξ≥4)=1-p(ξ≤4)=0.16.故选A.3.已知命题p:“△ABC是等腰三角形”,命题q:“△ABC是直角三角形”,则命题“△ABC是等腰直角三角形”的形式是()A.p或qB.p且qC.非pD.以上都不对答案:因为“△ABC是等腰直角三角形”即为“△ABC是等腰且直角三角形”,所以命题“△ABC是等腰直角三角形”的形式是p且q,故选B.4.已知x、y的取值如下表所示:
x0134y2.24.34.86.7若从散点图分析,y与x线性相关,且
y=0.95x+
a,则
a的值等于()A.2.6B.6.3C.2D.4.5答案:∵.x=0+1+3+44=2,.y=2.2+4.3+4.8+6.74=4.5,∴这组数据的样本中心点是(2,4.5)∵y与x线性相关,且y=0.95x+a,∴4.5=0.95×2+a,∴a=2.6,故选A.5.一个正方体的展开图如图所示,A、B、C、D为原正方体的顶点,则在原来的正方体中()A.AB∥CDB.AB与CD相交C.AB⊥CDD.AB与CD所成的角为60°答案:将正方体的展开图,还原为正方体,AB,CD为相邻表面,且无公共顶点的两条面上的对角线∴AB与CD所成的角为60°故选D.6.设直线过点(0,a),其斜率为1,且与圆x2+y2=2相切,则a的值为()
A.±
B.±2
C.±2
D.±4答案:B7.在测量某物理量的过程中,因仪器和观察的误差,使得n次测量分别得到a1,a2,…,an,共n个数据.我们规定所测量的“量佳近似值”a是这样一个量:与其他近似值比较,a与各数据的差的平方和最小.依此规定,从a1,a2,…,an推出的a=______.答案:∵所测量的“量佳近似值”a是与其他近似值比较,a与各数据的差的平方和最小.根据均值不等式求平方和的最小值知这些数的底数要尽可能的接近,∴a是所有数字的平均数,∴a=a1+a2+…+ann,故为:a1+a2+…+ann8.甲盒子中装有3个编号分别为1,2,3的小球,乙盒子中装有5个编号分别为1,2,3,4,5的小球,从甲、乙两个盒子中各随机取一个小球,则取出两小球编号之积为奇数的概率为______.答案:由题意知本题是一个等可能事件的概率,试验发生包含的事件是从两个盒子中分别取一个小球,共有3×5=15种结果,满足条件的事件是取出的两个小球编号之积是奇数,可以列举出有(1,1),(1,3),(1,5),(3,1),(3,3),(3,5)共有6种结果,∴要求的概率是615=25.故为25.9.
若平面向量,,两两所成的角相等,||=||=1,||=3,则|++|=()
A.2
B.4
C.2或5
D.4或5答案:C10.圆x2+y2=1和圆x2+y2-6y+5=0的位置关系是()
A.外切
B.内切
C.外离
D.内含答案:A11.某次乒乓球比赛的决赛在甲乙两名选手之间举行,比赛采用五局三胜制,按以往比赛经验,甲胜乙的概率为23.
(1)求比赛三局甲获胜的概率;
(2)求甲获胜的概率;
(3)设甲比赛的次数为X,求X的数学期望.答案:记甲n局获胜的概率为Pn,n=3,4,5,(1)比赛三局甲获胜的概率是:P3=C33(23)3=827;(2)比赛四局甲获胜的概率是:P4=C23(23)3
(13)=827;比赛五局甲获胜的概率是:P5=C24(13)2(23)3=1681;甲获胜的概率是:P3+P4+P5=6481.(3)记乙n局获胜的概率为Pn′,n=3,4,5.P3′=C33(13)3=127,P4′=C23(13)3
(23)=227;P5′=C24(13)3(23)2=881;故甲比赛次数的分布列为:X345P(X)P3+P3′P4+P4′P5+P5′所以甲比赛次数的数学期望是:EX=3(127+827)+4(827+227)+5(1681+881
)=10727.12.若关于x的一元二次实系数方程x2+px+q=0有一个根为1+i(i是虚数单位),则p+q的值是()
A.-1
B.0
C.2
D.-2答案:B13.若平面α,β的法向量分别为(-1,2,4),(x,-1,-2),并且α⊥β,则x的值为()A.10B.-10C.12D.-12答案:∵α⊥β,∴平面α,β的法向量互相垂直∴(-1,2,4)•(x,-1,-2)=0即-1×x+(-1)×2+4×(-2)=0解得x=-10故选B.14.(1)求过两直线l1:7x-8y-1=0和l2:2x+17y+9=0的交点,且平行于直线2x-y+7=0的直线方程.
(2)求点A(--2,3)关于直线l:3x-y-1=0对称的点B的坐标.答案:(1)联立两条直线的方程可得:7x-8y-1=02x+17y+9=0,解得x=-1127,y=-1327所以l1与l2交点坐标是(-1127,-1327).(2)设与直线2x-y+7=0平行的直线l方程为2x-y+c=0因为直线l过l1与l2交点(-1127,-1327).所以c=13所以直线l的方程为6x-3y+1=0.点P(-2,3)关于直线3x-y-1=0的对称点Q的坐标(a,b),则b-3a+2×3=-1,且3×a-22-b+32-1=0,解得a=10且b=-1,对称点的坐标(10,-1)15.口袋中装有三个编号分别为1,2,3的小球,现从袋中随机取球,每次取一个球,确定编号后放回,连续取球两次.则“两次取球中有3号球”的概率为()A.59B.49C.25D.12答案:每次取球时,出现3号球的概率为13,则两次取得球都是3号求得概率为C22?(13)2=19,两次取得球只有一次取得3号求得概率为C12?13?23=49,故“两次取球中有3号球”的概率为19+49=59,故选A.16.点M的直角坐标是,则点M的极坐标为()
A.(2,)
B.(2,-)
C.(2,)
D.(2,2kπ+)(k∈Z)答案:C17.一元二次不等式ax2+bx+c≤0的解集是全体实数所满足的条件是(
)
A.
B.
C.
D.答案:D18.如图,在直角坐标系中,A,B,C三点在x轴上,原点O和点B分别是线段AB和AC的中点,已知AO=m(m为常数),平面上的点P满足PA+PB=6m.
(1)试求点P的轨迹C1的方程;
(2)若点(x,y)在曲线C1上,求证:点(x3,y22)一定在某圆C2上;
(3)过点C作直线l,与圆C2相交于M,N两点,若点N恰好是线段CM的中点,试求直线l的方程.答案:(1)由题意可得点P的轨迹C1是以A,B为焦点的椭圆.…(2分)且半焦距长c=m,长半轴长a=3m,则C1的方程为x29m2+y28m2=1.…(5分)(2)若点(x,y)在曲线C1上,则x29m2+y28m2=1.设x3=x0,y22=y0,则x=3x0,y=22y0.…(7分)代入x29m2+y28m2=1,得x02+y02=m2,所以点(x3,y22)一定在某一圆C2上.…(10分)(3)由题意C(3m,0).…(11分)设M(x1,y1),则x12+y12=m2.…①因为点N恰好是线段CM的中点,所以N(x1+3m2,y12).代入C2的方程得(x1+3m2)2+(y12)2=m2.…②联立①②,解得x1=-m,y1=0.…(15分)故直线l有且只有一条,方程为y=0.…(16分)(若只写出直线方程,不说明理由,给1分)19.如图所示,在Rt△ABC内有一内接正方形,它的一条边在斜边BC上,设AB=a,∠ABC=θ
(1)求△ABC的面积f(θ)与正方形面积g(θ);
(2)当θ变化时,求f(θ)g(θ)的最小值.答案:(1)由题得:AC=atanθ∴f(θ)=12a2tanθ(0<θ<π2)
设正方形的边长为x,则BG=xsinθ,由几何关系知:∠AGD=θ∴AG=xcosθ
由BG+AG=a?xsinθ+xcosθ=a?x=asinθ1+sinθcosθ∴g(θ)=a2sin2θ(1+sinθcosθ)2(0<θ<π2)(2)f(θ)g(θ)=(1+sinθcoθ)22sinθcosθ=1+1sin2θ+sin2θ4
令:t=sin2θ∵0<θ<π2∴t∈(0,1]∴y=1+1t+t4=1+14(t+t4)∵函数y=1+14(t+t4)在(0,1]递减∴ymin=94(当且仅当t=1即θ=π4时成立)∴当θ=π4时,f(θ)g(θ)的最小值为94.20.已知a=(1,2),则|a|=______.答案:∵a=(1,2),∴|a|=12+22=5.故为5.21.已知向量,,,则(
)A.B.C.5D.25答案:C解析:将平方即可求得C.22.将两个数a=8,b=17交换,使a=17,b=8,下面语句正确一组是()
A.
B.
C.
D.
答案:B23.某品牌平板电脑的采购商指导价为每台2000元,若一次采购数量达到一定量,还可享受折扣.如图为某位采购商根据折扣情况设计的算法程序框图,若一次采购85台该平板电脑,则S=______元.答案:分析程序中各变量、各语句,其作用是:表示一次采购共需花费的金额,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数S=200×0.8?x,x>100200×0.9?x,50<x≤100200?x,0<x≤50的值,∵x=85,∴S=200×0.9×85=15300(元),故为:15300.24.抛物线x=14ay2的焦点坐标为()A.(116a,0)B.(a,0)C.(0,116a)D.(0,a)答案:抛物线x=14ay2可化为:y2=4ax,它的焦点坐标是(a,0)故选B.25.下列输入语句正确的是()
A.INPUT
x,y,z
B.INPUT“x=”;x,“y=”;y
C.INPUT
2,3,4
D.INPUT
x=2答案:A26.平面向量的夹角为,则等于(
)
A.
B.3
C.7
D.79答案:A27.圆(x+3)2+(y-1)2=25上的点到原点的最大距离是()
A.5-
B.5+
C
D.10答案:B28.设两圆C1、C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=______.答案:∵两圆C1、C2都和两坐标轴相切,且都过点(4,1),故两圆圆心在第一象限的角平分线上,设圆心的坐标为(a,a),则有|a|=(a-4)2-(a-1)2,∴a=5+22,或a=5-22,故圆心为(5+22,5+22
)
和(5-22,5-22
),故两圆心的距离|C1C2|=2[(5+22)-(5-22)]=8,故为:829.一支田径队有男运动员112人,女运动员84人,用分层抽样的方法从全体男运动员中抽出了32人,则应该从女运动员中抽出的人数为()
A.12
B.13
C.24
D.28答案:C30.某研究小组在一项实验中获得一组数据,将其整理得到如图所示的散点图,下列函数中,最能近似刻画y与t之间关系的是(
)
A.y=2t
B.y=2t2
C.y=t3
D.y=log2t
答案:D31.(几何证明选做题)若A,B,C是⊙O上三点,PC切⊙O于点C,∠ABC=110°,∠BCP=40°,则∠AOB的大小为______.答案:∵PC切⊙O于点C,OC为圆的半径∴OC⊥PC,即∠PCO=90°∵∠BCP=40°∴∠BCO=50°由弦切角定理及圆周角定理可知,∠BOC=2∠PCB=80°∵△BOC中,∠OBC=50°,∠ABC=110°∴∠OBA=60°∵OB=OA∴∠AOB=60°故为:60°32.①点P在△ABC所在的平面内,且②点P为△ABC内的一点,且使得取得最小值;③点P是△ABC所在平面内一点,且,上述三个点P中,是△ABC的重心的有()
A.0个
B.1个
C.2个
D.3个答案:D33.若平面α与β的法向量分别是a=(1,0,-2),b=(-1,0,2),则平面α与β的位置关系是()A.平行B.垂直C.相交不垂直D.无法判断答案:∵a=(1,0,-2),b=(-1,0,2),∴a+b=(1-1,0+0,-2+2)=(0,0,0),即a+b=0由此可得a∥b∵a、b分别是平面α与β的法向量∴平面α与β的法向量平行,可得平面α与β互相平行.34.三个数a=0.32,b=log20.3,c=20.3之间的大小关系是()A.a<c<bB.a<b<cC.b<a<cD.b<c<a答案:由对数函数的性质可知:b=log20.3<0,由指数函数的性质可知:0<a<1,c>1∴b<a<c故选C35.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,根据收集到的数据(如下表),由最小二乘法求得回归直线方程y=0.68x+54.6
表中有一个数据模糊不清,请你推断出该数据的值为()A.68B.68.2C.69D.75答案:设表中有一个模糊看不清数据为m.由表中数据得:.x=30,.y=m+3075,由于由最小二乘法求得回归方程y=0.68x+54.6.将x=30,y=m+3075代入回归直线方程,得m=68.故选A.36.类比“等差数列的定义”给出一个新数列“等和数列的定义”是()A.连续两项的和相等的数列叫等和数列B.从第一项起,以后每一项与前一项的和都相等的数列叫等和数列C.从第二项起,以后每一项与前一项的差都不相等的数列叫等和数列D.从第二项起,以后每一项与前一项的和都相等的数列叫等和数列答案:由等差数列的定义:从第二项起,以后每一项与前一项的差都相等的数列叫等差数列类比可得:从第二项起,以后每一项与前一项的和都相等的数列叫等和数列故选D37.引入复数后,数系的结构图为()
A.
B.
C.
D.
答案:A38.已知圆锥的母线长与底面半径长之比为3:1,一个正方体有四个顶点在圆锥的底面内,另外的四个顶点在圆锥的侧面上(如图),则圆锥与正方体的表面积之比为(
)
A.π:1
B.3π:1
C.3π:2
D.3π:4
答案:D39.设a=lg2+lg5,b=ex(x<0),则a与b的大小关系是?答案:a═lg2+lg5=lg10=1又b=ex,由指数函数的性质知,当x<0时,0<b<1∴a>b40.(文)椭圆的一个焦点与短轴的两端点构成一个正三角形,则该椭圆的离心率为()
A.
B.
C.
D.不确定答案:C41.如图,F1,F2分别为椭圆x2a2+y2b2=1的左、右焦点,点P在椭圆上,△POF2是面积为3的正三角形,则b2的值是______.答案:∵△POF2是面积为3的正三角形,∴S=34|PF2|2=3,|PF2|=2.∴c=2,∵△PF1F2为直角三角形,∴a=3+1,故为23.42.求证:不论λ取什么实数时,直线(2λ-1)x+(λ+3)y-(λ-11)=0都经过一个定点,并求出这个定点的坐标.答案:证明:直线(2λ-1)x+(λ+3)y-(λ-11)=0即λ(2x+y-1)+(-x+3y+11)=0,根据λ的任意性可得2x+y-1=0-x+3y+11=0,解得x=2y=-3,∴不论λ取什么实数时,直线(2λ-1)x+(λ+3)y-(λ-11)=0都经过一个定点(2,-3).43.附加题选做题B.(矩阵与变换)
设矩阵A=m00n,若矩阵A的属于特征值1的一个特征向量为10,属于特征值2的一个特征向量为01,求实数m,n的值.答案:由题意得m00n10=110,m00n01=201,…6分化简得m=10?n=00?m=0n=2所以m=1n=2.…10分44.有一矩形纸片ABCD,按图所示方法进行任意折叠,使每次折叠后点B都落在边AD上,将B的落点记为B′,其中EF为折痕,点F也可落在边CD上,过B′作B′H∥CD交EF于点H,则点H的轨迹为()A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分答案:由题意知:点H到定点B的距离以及到定直线AD的距离相等,根据抛物线的定义可知:点H的轨迹为:抛物线,(抛物线的一部分)故选D.45.已知点P在曲线C1:x216-y29=1上,点Q在曲线C2:(x-5)2+y2=1上,点R在曲线C3:(x+5)2+y2=1上,则|PQ|-|PR|的最大值是()A.6B.8C.10D.12答案:由双曲线的知识可知:C1x216-y29=1的两个焦点分别是F1(-5,0)与F2(5,0),且|PF1|+|PF2|=8而这两点正好是两圆(x+5)2+y2=1和(x-5)2+y2=1的圆心,两圆(x+5)2+y2=4和(x-5)2+y2=1的半径分别是r1=1,r2=1,∴|PQ|max=|PF1|+1,|PR|min=|PF2|-1,∴|PQ|-|PR|的最大值为:(|PF1|+1)-(|PF2|-1)=|PF1|+|PF2|+2=8+2=10,故选C46.若随机变量X的概率分布如下表,则表中a的值为()
X
1
2
3
4
P
0.2
0.3
0.3
a
A.1
B.0.8
C.0.3
D.0.2答案:D47.用反证法证明“如果a<b,那么“”,假设的内容应是()
A.
B.
C.且
D.或
答案:D48.对任意实数x,y,定义运算x*y为:x*y=ax+by+cxy,其中a,b,c为常数,等式右端运算为通常的实数加法和乘法,现已知1*2=3,2*3=4,并且有一个非零实数m,使得对于任意的实数都有x*m=x,则d的值为(
)
A.4
B.1
C.0
D.不确定答案:A49.若与垂直,则k的值是()
A.2
B.1
C.0
D.答案:D50.在某项体育比赛中,七位裁判为一选手打出的分数如下:
90
89
90
95
93
94
93
去掉一个最高分和一个最低分后,所剩数的平均值和方差分别为()
A.92,2
B.92,2.8
C.93,2
D.93,2.8答案:B第2卷一.综合题(共50题)1.如图是用来求2+32+43+54+…+101100的计算程序,请补充完整:______.
答案:2+32+43+54+…+101100=(1+1)+(1+12)+(1+13)+…+(1+1100)故循环体中应是S=S+(1+1i)故为:S=S+(1+1i)2.在空间直角坐标系中,点(-2,1,4)关于x轴的对称点的坐标为()
A.(-2,1,-4)
B.(-2,-1,-4)
C.(2,1,-4)
D.(2,-1,4)答案:B3.已知函数f(x)=
-x+1,x<0x-1,x≥0,则不等式x+(x+1)f(x+1)≤1的解集是()
A.[-1,
2-1]B.(-∞,1]C.(-∞,
2-1]D.[-
2-1,
2-1]答案:C解析:由题意x+(x+1)f(x+1)=4.据上海中心气象台发布的天气预报,一月上旬某天上海下雨的概率是70%至80%.写出下列解释中正确的序号______.
①上海地区面积的70%至80%将降雨;
②上海地区下雨的时间在16.8小时至19.2%小时之间;
③上海地区在相似的气候条件下有70%至80%的日子是下雨的;
④上海地区在相似的气候条件下有20%至30%的日子是晴,或多云,或阴.答案:据上海中心气象台发布的天气预报,一月上旬某天上海下雨的概率是70%至80%.表示上海地区在相似的气候条件下下雨的可能性很大,是有70%至80%的日子是下雨的.是但不一定下,也不是的70%至80%的时间与地区.故解释中正确的序号③故为:③5.解关于x的不等式(k≥0,k≠1).答案:不等式的解集为{x|x2}解析:原不等式即,1°若k=0,原不等式的解集为空集;2°若1-k>0,即0,所以原不等式的解集为{x|x2}.</k<1,由原不等式的解集为{x|2<x<</k<1时,原不等式等价于6.阅读下面的程序框图,则输出的S=()A.14B.20C.30D.55答案:∵S1=0,i1=1;S2=1,i2=2;S3=5,i3=3;S4=14,i4=4;S5=30,i=5>4退出循环,故为C.7.下面程序框图输出的S表示什么?虚线框表示什么结构?答案:由框图知,当r=5时,输出的s=πr2所以程序框图输出的S表示:求半径为5的圆的面积的算法的程序框图,虚线框是一个顺序结构.8.已知平面内一动点P到F(1,0)的距离比点P到y轴的距离大1.
(1)求动点P的轨迹C的方程;
(2)过点F的直线交轨迹C于A,B两点,交直线x=-1于M点,且MA=λ1AF,MB=λ2BF,求λ1+λ2的值.答案:(1)由题意知动点P到F(1,0)的距离与直线x=-1的距离相等,由抛物线定义知,动点P在以F(1,0)为焦点,以直线x=-1为准线的抛物线上,方程为y2=4x.(2)由题设知直线的斜线存在,设直线AB的方程为:y=k(x-1),设A(x1,y1),B(x2,y2),由y=k(x-1)y2=4x,得k2x2-2(k2+2)x+k2=0,∵x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得k2x2-2(k2+2)x+k2=0,∴x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得λ1=-1-2x2-1,同理λ2=-1-2x2-1,∴λ1+λ2=-2-2(1x1-1+1x2-1)=0.9.有一矩形纸片ABCD,按图所示方法进行任意折叠,使每次折叠后点B都落在边AD上,将B的落点记为B′,其中EF为折痕,点F也可落在边CD上,过B′作B′H∥CD交EF于点H,则点H的轨迹为()A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分答案:由题意知:点H到定点B的距离以及到定直线AD的距离相等,根据抛物线的定义可知:点H的轨迹为:抛物线,(抛物线的一部分)故选D.10.有一批机器,编号为1,2,3,…,112,为调查机器的质量问题,打算抽取10台,问此样本若采用简单的随机抽样方法将如何获得?答案:本题可以采用抽签法来抽取样本,首先把该校学生都编上号001,002,112…用抽签法做112个形状、大小相同的号签,然后将这些号签放到同一个箱子里,进行均匀搅拌,抽签时,每次从中抽一个号签,连续抽取10次,就得到一个容量为10的样本.11.如图,I表示南北方向的公路,A地在公路的正东2km处,B地在A地北偏东60°方向2km处,河流沿岸PQ(曲线)上任一点到公路l和到A地距离相等,现要在河岸PQ上选一处M建一座码头,向A,B两地转运货物,经测算从M到A,B修建公路的费用均为a万元/km,那么修建这两条公路的总费用最低是(单位万元)()
A.(2+)a
B.5a
C.2(+1)a
D.6a
答案:B12.一个箱子中装有质量均匀的10个白球和9个黑球,一次摸出5个球,在已知它们的颜色相同的情况下,该颜色是白色的概率是______.答案:10个白球中取5个白球有C105种9个黑球中取5个黑球有C95种∴一次摸出5个球,它们的颜色相同的有C105+C95种∴一次摸出5个球,在已知它们的颜色相同的情况下,该颜色是白色的概率=C510C510+C59=23故为:2313.设复数z的实部是
12,且|z|=1,则z=______.答案:设复数z的虚部等于b,b∈z,由复数z的实部是12,且|z|=1,可得14+b2=1,∴b=±32,故z=12±32i.故为:12±32i.14.在△ABC所在平面存在一点O使得OA+OB+OC=0,则面积S△OBCS△ABC=______.答案:∵OA+OB+OC=0,∴OB+
OC=AO,设OB+OC=OD∴O是AD的中点,要求面积之比的两个三角形是同底的三角形,∴面积之比等于三角形的高之比,∴比值是13,故为:13.15.某制药厂为了缩短培养时间,决定优选培养温度,试验范围定为29℃至50℃,现用分数法确定最佳温度,设第1,2,3次试验的温度分别为x1,x2,x3,若第2个试点比第1个试点好,则x3的值为(
)。答案:34℃或45℃16.(理)某单位有8名员工,其中有5名员工曾经参加过一种或几种技能培训,另外3名员工没有参加过任何技能培训,现要从8名员工中任选3人参加一种新的技能培训;
(I)求恰好选到1名曾经参加过技能培训的员工的概率;
(Ⅱ)这次培训结束后,仍然没有参加过任何技能培训的员工人数X是一个随机变量,求X的分布列和数学期望.答案:(I)由题意知本题是一个等可能事件的概率,∵试验发生包含的事件是从8人中选3个,共有C83=56种结果,满足条件的事件是恰好选到1名曾经参加过技能培训的员工,共有C51C32=15∴恰好选到1名已参加过其他技能培训的员工的概率P=1556(II)随机变量X可能取的值是:0,1,2,3.P(X=0)=156P(X=1)=1556P(X=2)=1528P(X=3)=C35C38=528∴随机变量X的分布列是X0123P15615561528528∴X的数学期望是1×1556+2×
1528+3×528=15817.在空间直角坐标系O-xyz中,点P(4,3,7)关于坐标平面yOz的对称点的坐标为______.答案:设所求对称点为P'(x,y,z)∵关于坐标平面yOz的对称的两个点,它们的纵坐标、竖坐标相等,而横坐标互为相反数,∴x=-4,y=3,z=7即P关于坐标平面yOz的对称点的坐标为P'(-4,3,7)故为:(-4,3,7)18.方程组的解集是[
]A.
B.{x,y|x=3且y=-7}
C.{3,-7}
D.{(x,y)|x=3且y=-7}答案:D19.四个森林防火观察站A,B,C,D的坐标依次为(5,0),(-5,0),(0,5),(0,-5),他们都发现某一地区有火讯.若A,B观察到的距离相差为6,且离A近,C,D观察到的距离相差也为6,且离C近.试求火讯点的坐标.答案:设火讯点的坐标P(x,y),由于观察到的距离相差为6,点P在双曲线上,由于离A近,所以点P在双曲线x29-y216=1(x≥3)上;由于离C近,所以点P在双曲线Y29-X216=1(Y≥3)上;由这两个方程解得:x=1277y=1277答:火讯点的坐标为:(1277,1277).20.若直线3x+4y+m=0与曲线x=1+cosθy=-2+sinθ(θ为参数)没有公共点,则实数m的取值范围是
______.答案:∵曲线x=1+cosθy=-2+sinθ(θ为参数)的普通方程是(x-1)2+(y+2)2=1则圆心(1,-2)到直线3x+4y+m=0的距离d=|3•1+4(-2)+m|32+42=|m-5|5,令|m-5|5>1,得m>10或m<0.故为:m>10或m<0.21.已知圆C:x2+y2-4x-6y+12=0的圆心在点C,点A(3,5),求:
(1)过点A的圆的切线方程;
(2)O点是坐标原点,连接OA,OC,求△AOC的面积S.答案:(1)⊙C:(x-2)2+(y-3)2=1.当切线的斜率不存在时,对直线x=3,C(2,3)到直线的距离为1,满足条件;当k存在时,设直线y-5=k(x-3),即y=kx+5-3k,∴|-k+2|k2+1=1,得k=34.∴得直线方程x=3或y=34x+114.(2)|AO|=9+25=34,l:5x-3y=0,d=134,S=12d|AO|=12.22.已知随机变量ξ服从正态分布N(2,0.2),P(ξ≤4)=0.84,则P(ξ≤0)等于()A.0.16B.0.32C.0.68D.0.84答案:∵随机变量ξ服从正态分布N(2,0.2),μ=2,∴p(ξ≤0)=p(ξ≥4)=1-p(ξ≤4)=0.16.故选A.23.
如图,已知PA为⊙O的切线,PBC为⊙O的割线,PA=6,PB=BC,⊙O的半径OC=5,那么弦BC的弦心距OM=()
A.4
B.3
C.5
D.6
答案:A24.平面直角坐标系中,O为坐标原点,设向量其中,若且0≤μ≤λ≤1,那么C点所有可能的位置区域用阴影表示正确的是()
A.
B.
C.
D.
答案:A25.将包含甲、乙两人的4位同学平均分成2个小组参加某项公益活动,则甲、乙两名同学分在同一小组的概率为()
A.
B.
C.
D.答案:C26.规定符号“△”表示一种运算,即a△b=ab+a+b,其中a、b∈R+;若1△k=3,则函数f(x)=k△x的值域______.答案:1△k=k+1+k=3,解得k=1,∴k=1∴f(x)=k△x=kx+k+x=x+x+1对于x需x≥0,∴对于f(x)=x+x+1=(x+12)2+34≥1故函数f(x)的值域为[1,+∞)故为:[1,+∞)27.如果e1,e2是平面a内所有向量的一组基底,那么()A.若实数λ1,λ2使λ1e1+λ2e2=0,则λ1=λ2=0B.空间任一向量可以表示为a=λ1e1+λ2e2,这里λ1,λ2∈RC.对实数λ1,λ2,λ1e1+λ2e2不一定在平面a内D.对平面a中的任一向量a,使a=λ1e1+λ2e2的实数λ1,λ2有无数对答案:∵由基底的定义可知,e1和e2是平面上不共线的两个向量,∴实数λ1,λ2使λ1e1+λ2e2=0,则λ1=λ2=0,不是空间任一向量都可以表示为a=λ1e1+λ2e2,而是平面a中的任一向量a,可以表示为a=λ1e1+λ2e2的形式,此时实数λ1,λ2有且只有一对,而对实数λ1,λ2,λ1e1+λ2e2一定在平面a内,故选A.28.设函数f(x)=(2a-1)x+b是R上的减函数,则a的范围为______.答案:∵f(x)=(2a-1)x+b是R上的减函数,∴2a-1<0,解得a<12.故为:a<12.29.设A(3,4),在x轴上有一点P(x,0),使得|PA|=5,则x等于()
A.0
B.6
C.0或6
D.0或-6答案:C30.已知两条直线y=ax-2和y=(a+2)x+1互相垂直,则a等于(
)
A.2
B.1
C.0
D.-1答案:D31.在某电视歌曲大奖赛中,最有六位选手争夺一个特别奖,观众A,B,C,D猜测如下:A说:获奖的不是1号就是2号;A说:获奖的不可能是3号;C说:4号、5号、6号都不可能获奖;D说:获奖的是4号、5号、6号中的一个.比赛结果表明,四个人中恰好有一个人猜对,则猜对者一定是观众
获特别奖的是
号选手.答案:C,3.解析:推理如下:因为只有一人猜对,而C与D互相否定,故C、D中一人猜对。假设D对,则推出B也对,与题设矛盾,故D猜错,所以猜对者一定是C;于是B一定猜错,故获奖者是3号选手(此时A错).32.椭圆的长轴长为10,短轴长为8,则椭圆上的点到椭圆中心的距离的取值范围是______.答案:椭圆上的点到圆心的最小距离为短半轴的长度,最大距离为长半轴的长度因为椭圆的长轴长为10,短轴长为8,所以椭圆上的点到圆心的最小距离为4,最大距离为5所以椭圆上的点到椭圆中心距离的取值范围是[4,5]故为:[4,5]33.双曲线的实轴长和焦距分别为()
A.
B.
C.
D.答案:C34.若集合S={a,b,c}(a、b、c∈R)中三个元素为边可构成一个三角形,那么该三角形一定不可能是()
A.锐角三角形
B.直角三角形
C.钝角三角形
D.等腰三角形答案:D35.用反证法证明命题:“a,b,c,d∈R,a+b=1,c+d=1,且ac+bd>1,则a,b,c,d中至少有一个负数”时的假设为()
A.a,b,c,d中至少有一个正数
B.a,b,c,d全为正数
C.a,b,c,d全都大于等于0
D.a,b,c,d中至多有一个负数答案:C36.若kxy-8x+9y-12=0表示两条直线,则实数k的值及两直线所成的角分别是()
A.8,60°
B.4,45°
C.6,90°
D.2,30°答案:C37.已知a,b为正数,求证:≥.答案:证明略解析:1:∵a>0,b>0,∴≥,≥,两式相加,得≥,∴≥.解析2.≥.∴≥.解析3.∵a>0,b>0,∴,∴欲证≥,即证≥,只要证
≥,只要证
≥,即证
≥,只要证a3+b3≥ab(a+b),只要证a2+b2-ab≥ab,即证(a-b)2≥0.∵(a-b)2≥0成立,∴原不等式成立.【名师指引】当要证明的不等式形式上比较复杂时,常通过分析法寻求证题思路.“分析法”与“综合法”是数学推理中常用的思维方法,特别是这两种方法的综合运用能力,对解决实际问题有重要的作用.这两种数学方法是高考考查的重要数学思维方法.38.设随机变量ξ服从正态分布N(u,9),若p(ξ>3)=p(ξ<1),则u=______.答案:∵随机变量ξ服从正态分布N(u,9),p(ξ>3)=p(ξ<1),∴u=3+12=2故为239.在区间[-1,1]上任取两个数s和t,则关于x的方程x2+sx+t=0的两根都是正数的概率是[
]A.
B.
C.
D.答案:A40.一圆台上底半径为5cm,下底半径为10cm,母线AB长为20cm,其中A在上底面上,B在下底面上,从AB中点M,拉一条绳子,绕圆台的侧面一周转到B点,则这条绳子最短长为______cm.答案:画出圆台的侧面展开图,并还原成圆锥展开的扇形,且设扇形的圆心为O.有图得:所求的最短距离是MB',设OA=R,圆心角是α,则由题意知,10π=αR
①,20π=α(20+R)
②,由①②解得,α=π2,R=20,∴OM=30,OB'=40,则MB'=50cm.故为:50cm.41.大熊猫活到十岁的概率是0.8,活到十五岁的概率是0.6,若现有一只大熊猫已经十岁了,则他活到十五岁的概率是()
A.0.8
B.0.75
C.0.6
D.0.48答案:B42.已知直线l:(t为参数)的倾斜角是()
A.
B.
C.
D.答案:D43.已知x+2y+3z=1,则x2+y2+z2取最小值时,x+y+z的值为______.答案:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2)(12+22+32)故x2+y2+z2≥114,当且仅当x1=y2=z3取等号,此时y=2x,z=3x,x+2y+3z=14x=1,∴x=114,y=214,x=314,x+y+z=614=37.故为:37.44.关于x的方程(m+3)x2-4mx+2m-1=0的两根异号,且负数根的绝对值比正数根大,那么实数m的取值范围是()
A.-3<m<0
B.0<m<3
C.m<-3或m>0
D.m<0或m>3答案:A45.命题“对于任意角θ,cos4θ-sin4θ=cos2θ”的证明:“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos2θ”过程应用了()
A.分析发
B.综合法
C.综合法、分析法结合使用
D.间接证法答案:B46.已知圆C的极坐标方程是ρ=2sinθ,那么该圆的直角坐标方程为
______,半径长是
______.答案:把极坐标方程是ρ=2sinθ的两边同时乘以ρ得:ρ2=2ρsinθ,∴x2+y2=2y,即x2+(y-1)2=1,表示以(0,1)为圆心,半径等于1的圆,故为:x2+(y-1)2=1;1.47.以数集A={a,b,c,d}中的四个元素为边长的四边形只能是()A.平行四边形B.矩形C.菱形D.梯形答案:∵数集A={a,b,c,d}中的四个元素互不相同,∴以数集A={a,b,c,d}中的四个元素为边长的四边形,四条边不相等∴四边形只可能是梯形故选D.48.已知双曲线的渐近线方程为2x±3y=0,F(0,-5)为双曲线的一个焦点,则双曲线的方程为()
A.
B.
C.
D.答案:B49.已知=(1,2),=(x,1),当(+2)⊥(2-)时,实数x的值为(
)
A.6
B.2
C.-2
D.或-2答案:D50.直线l过点(-3,1),且它的一个方向向量n=(2,-3),则直线l的方程为______.答案:设直线l的另一个方向向量为a=(1,k),其中k是直线的斜率可得n=(2,-3)与a=(1,k)互相平行∴12=k-3⇒k=-32所以直线l的点斜式方程为:y-1=-32(x+3)化成一般式:3x+2y+7=0故为:3x+2y+7=0第3卷一.综合题(共50题)1.设a1,a2,…,an为实数,证明:a1+a2+…+ann≤a21+a22+…+a2nn.答案:证明:不妨设a1≤a2≤…≤an,则由排序原理得:a12+a22+…+an2=a1a1+a2a2+…+anana12+a22+…+an2≤a1a2+a2a3+…+ana1a12+a22+…+an2≤a1a3+a2a4+…+an-1a1+ana2…a12+a22+…+an2≤a1an+a2a1+…+anan-1.将上述n个式子相加,得:n(a12+a22+…+an2)≤(a1+a2+…+an)2,上式两边除以n2,并开方可得:a1+a2+…+ann≤a21+a22+…+a2nn.2.点M(4,)化成直角坐标为()
A.(2,)
B.(-2,-)
C.(,2)
D.(-,-2)答案:B3.一圆台上底半径为5cm,下底半径为10cm,母线AB长为20cm,其中A在上底面上,B在下底面上,从AB中点M,拉一条绳子,绕圆台的侧面一周转到B点,则这条绳子最短长为______cm.答案:画出圆台的侧面展开图,并还原成圆锥展开的扇形,且设扇形的圆心为O.有图得:所求的最短距离是MB',设OA=R,圆心角是α,则由题意知,10π=αR
①,20π=α(20+R)
②,由①②解得,α=π2,R=20,∴OM=30,OB'=40,则MB'=50cm.故为:50cm.4.在空间四边形OABC中,OA+AB-CB等于()A.OAB.ABC.OCD.AC答案:根据向量的加法、减法法则,得OA+AB-CB=OB-CB=OB+BC=OC.故选C.5.圆x2+y2=1在矩阵10012对应的变换作用下的结果为______.答案:设P(x,y)是圆C:x2+y2=1上的任一点,P1(x′,y′)是P(x,y)在矩阵A=10012对应变换作用下新曲线上的对应点,则x′y′=10012xy=1x12y即x′=xy′=12y,所以x=x′y=2y′,将x=x′y=2y′代入x2+y2=1,得x2+4y2=1,(8分)故为:x2+4y2=1.6.设O为坐标原点,给定一个定点A(4,3),而点B(x,0)在x正半轴上移动,l(x)表示AB的长,则△OAB中两边长的比值的最大值为()
A.
B.
C.
D.答案:B7.抛物线y=x2的焦点坐标是()
A.(,0)
B.(0,)
C.(0,1)
D.(1,0)答案:C8.如图是集合的知识结构图,如果要加入“全集”,则应该放在()
A.“集合的概念”的下位
B.“集合的表示”的下位
C.“基本关系”的下位
D.“基本运算”的下位答案:D9.已知200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,则时速在[60,70]的汽车大约有()辆.A.90B.80C.70D.60答案:由已知可得样本容量为200,又∵数据落在区间[60,70]的频率为0.04×10=0.4∴时速在[60,70]的汽车大约有200×0.4=80故选B.10.若复数z=(m2-1)+(m+1)i为纯虚数,则实数m的值等于______.答案:复数z=(m2-1)+(m+1)i当z是纯虚数时,必有:m2-1=0且m+1≠0解得,m=1.故为1.11.向量a、b满足|a|=1,|b|=2,且a与b的夹角为π3,则|a+2b|=______.答案:∵|a|=1,|b|=2,且a与b的夹角为π3,∴a?b=|a|?|b|?cosπ3=1因此,(a+2b)2=|a|2+4a?b+4|b|2=12+4×1+4|b|2=21∴|a+2b|=21故为:2112.如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P,若PBPA=12,PCPD=13,则BCAD的值为______.答案:因为A,B,C,D四点共圆,所以∠DAB=∠PCB,∠CDA=∠PBC,因为∠P为公共角,所以△PBC∽△PAB,所以PBPD=PCPA=BCAD.设OB=x,PC=y,则有x3y=y2x?x=6y2,所以BCAD=x3y=66.故填:66.13.如图是《集合》的知识结构图,如果要加入“子集”,那么应该放在()
A.“集合”的下位
B.“含义与表示”的下位
C.“基本关系”的下位
D.“基本运算”的下位
答案:C14.据上海中心气象台发布的天气预报,一月上旬某天上海下雨的概率是70%至80%.写出下列解释中正确的序号______.
①上海地区面积的70%至80%将降雨;
②上海地区下雨的时间在16.8小时至19.2%小时之间;
③上海地区在相似的气候条件下有70%至80%的日子是下雨的;
④上海地区在相似的气候条件下有20%至30%的日子是晴,或多云,或阴.答案:据上海中心气象台发布的天气预报,一月上旬某天上海下雨的概率是70%至80%.表示上海地区在相似的气候条件下下雨的可能性很大,是有70%至80%的日子是下雨的.是但不一定下,也不是的70%至80%的时间与地区.故解释中正确的序号③故为:③15.两条直线l1:x-3y+2=0与l2:x-y+2=0的夹角的大小是______.答案:由于两条直线l1:x-3y+2=0与l2:x-y+2=0的斜率分别为33、1,设两条直线的夹角为θ,则tanθ=|k2-k11+k2•k1|=|1-331+1×33|=3-33+3=2-3,∴tan2θ=2tanθ1-tan2θ=33,∴2θ=π6,θ=π12,故为π12.16.已知点A(1,3),B(4,-1),则与向量同方向的单位向量为()
A.(,-)
B.(,-)
C.(-,)
D.(-,)答案:A17.若0<x<1,则2x,(12)x,(0.2)x之间的大小关系为()A.2x<(0.2)x<(12)xB.2x<(12)x<(0.2)xC.(12)x<(0.2)x<2xD.(0.2)x<(12)x<2x答案:由题意考察幂函数y=xn(0<n<1),利用幂函数的性质,∵0<n<1,∴幂函数y=xn在第一象限是增函数,又2>12>0.2∴2x>(12)x>(0.2)x故选D18.已知一种材料的最佳加入量在l000g到2000g之间,若用0.618法安排试验,则第一次试点的加入量可以是(
)g。答案:1618或138219.某学院有四个饲养房,分别养有18,54,24,48只白鼠供实验用,某项实验需要抽取24只白鼠,你认为最合适的抽样方法是()A.在每个饲养房各抽取6只B.把所以白鼠都编上号,用随机抽样法确定24只C.在四个饲养房应分别抽取3,9,4,8只D.先确定这四个饲养房应分别抽取3,9,4,8只样品,再由各饲养房将白鼠编号,用简单随机抽样确定各自要抽取的对象答案:A中对四个饲养房平均摊派,但由于各饲养房所养数量不一,反而造成了各个个体入选概率的不均衡,是错误的方法.B中保证了各个个体入选概率的相等,但由于没有注意到处在四个不同环境中会产生差异,不如采用分层抽样可靠性高,且统一编号统一选择加大了工作量.C中总体采用了分层抽样,但在每个层次中没有考虑到个体的差层(如健壮程度,灵活程度),貌似随机,实则各个个体概率不等.故选D.20.与函数y=x相等的函数是()A.f(x)=(x)2B.f(x)=x2xC.f(x)=x2D.f(x)=3x3答案:对于A,f(x)=x(x≥0),不符合;对于B,f(x)=x(x≠0),不符合;对于C,f(x)=|x|(x∈R),不符合;对于D,f(x)=x(x∈R),符合;故选D.21.已知抛物线x2=4y上的点p到焦点的距离是10,则p点坐标是
______.答案:根据抛物线方程可求得焦点坐标为(0,1)根据抛物线定义可知点p到焦点的距离与到准线的距离相等,∴yp+1=10,求得yp=9,代入抛物线方程求得x=±6∴p点坐标是(±6,9)故为:(±6,9)22.给出下列四个命题:
①若两个向量相等,则它们的起点相同,终点相同;
②在平行四边形ABCD中,一定有;
③若则
④若则
其中正确的命题个数是()
A.1
B.2
C.3
D.4答案:C23.曲线的参数方程是(t是参数,t≠0),它的普通方程是()
A.(x-1)2(y-1)=1
B.
C.
D.答案:B24.复数(12+32i)3i的值为______.答案:(12+32i)3i=(cosπ3+isinπ3)3cosπ2+isinπ2=cosπ+isinπcosπ2+
isinπ2=cosπ2+isinπ2=i,故为:i.25.算法的有穷性是指()A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确答案:一个算法必须在有限步内结束,简单的说就是没有死循环即算法的步骤必须有限故选C.26.若直线ax+by+1=0与圆x2+y2=1相离,则点P(a,b)的位置是()
A.在圆上
B.在圆外
C.在圆内
D.以上都有可能答案:C27.设椭圆=1和x轴正方向的交点为A,和y轴的正方向的交点为B,P为第一象限内椭圆上的点,使四边形OAPB面积最大(O为原点),那么四边形OAPB面积最大值为()
A.ab
B.ab
C.ab
D.2ab答案:B28.对任意实数x,y,定义运算x*y=ax+by+cxy,其中a,b,c是常数,等式右边的运算是通常的加法和乘法运算。已知1*2=3,2*3=4,并且有一个非零常数m,使得对任意实数x,都有x*m=x,则m的值是[
]
A.4
B.-4
C.-5
D.6答案:A29.不等式|x-500|≤5的解集是______.答案:因为不等式|x-500|≤5,由绝对值不等式的几何意义可知:{x|495≤x≤505}.故为:{x|495≤x≤505}.30.“若x、y全为零,则xy=0”的否命题为______.答案:由于“全为零”的否定为“不全为零”,所以“若x、y全为零,则xy=0”的否命题为“若x、y不全为零,则xy≠0”.故为:若x、y不全为零,则xy≠0.31.直线2x+y-3=0与直线3x+9y+1=0的夹角是()
A.
B.arctan2
C.
D.答案:C32.若数列{an}(n∈N+)为等差数列,则数列bn=a1+a2+a3+…+ann(n∈N+)也为等差数列,类比上述性质,相应地,若数列{cn}是等比数列且cn>0(n∈N+),则有数列dn=______(n∈N+)也是等比数列.答案:从商类比开方,从和类比到积,可得如下结论:nC1C2C3Cn故为:nC1C2C3Cn33.(选做题)
曲线(θ为参数)与直线y=a有两个公共点,则实数a的取值范围是(
).答案:0<a≤134.在平面直角坐标系xOy中,已知圆C:x=5cosθ-1y=5sinθ+2(θ为参数)和直线l:x=4t+6y=-3t-2(t为参数),则直线l与圆C相交所得的弦长等于______.答案:∵在平面直角坐标系xOy中,已知圆C:x=5cosθ-1y=5sinθ+2(θ为参数),∴(x+1)2+(y-2)2=25,∴圆心为(-1,2),半径为5,∵直线l:x=4t+6y=-3t-2(t为参数),∴3x+4y-10=0,∴圆心到直线l的距离d=|-3+8-10|5=1,∴直线l与圆C相交所得的弦长=2×52-1=46.故为46.35.已知椭圆C的中心在原点,焦点F1,F2在轴上,离心率e=22,且经过点M(0,2),求椭圆c的方程答案:若焦点在x轴很明显,过点M(0,2)点M即椭圆的上端点,所以b=2ca=22c2=12a2∵a2=b2+c2所以b2=c2=2a2=4椭圆:x24+y22=1若焦点在y轴,则a=2,ca=22,c=1∴b=1椭圆方程:x22+y2=1.36.点P(,)与圆x2+y2=1的位置关系是()
A.在圆内
B.在圆外
C.在圆上
D.与t有关答案:C37.设O是坐标原点,F是抛物线y2=2px(p>0)的焦点,A是抛物线上的一个动点,FA与x轴正方向的夹角为60°,求|OA|的值.答案:由题意设A(x+P2,3x),代入y2=2px得(3x)2=2p(x+p2)解得x=p(负值舍去).∴A(32p,3p)∴|OA|=(32p)2+3p2=212p38.如图,在Rt△ABC中,已知∠ABC=90°,BC=6,以AB为直径作⊙O,连接OC,过点C作⊙O的切线CD,D为切点,若sin∠OCD=45,则直径AB=______.答案:连接OD,则OD⊥
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度打胶工程物资采购合同
- 成都沙盘模型2024年度合作研发协议
- 2024年度建筑施工进度控制合同
- 二零二四年度电子产品制造与销售合同
- 二零二四年度茶园与茶叶博物馆建设捐赠合同
- 废品买卖合同3篇
- 2024年度技术开发合作合同技术成果归属及权益分配
- LED显示屏安装合同范文
- 二零二四年度窗帘设计著作权保护与授权合同
- 2024电商平台绿色环保与可持续发展协议
- 人教部编版六年级道德与法治上册第6课《人大代表为人民》精美课件
- 期末 (试题) -2024-2025学年外研版(三起)(2024)英语三年级上册
- 第五单元测试卷(单元测试)2024-2025学年统编版语文四年级上册
- 《金融科技概论(第二版)》高职全套教学课件
- 2023年12月英语四级真题及答案-第1套
- 心衰健康宣教课件
- 药事管理学实践报告总结
- 2024年大学计算机基础考试题库附答案(完整版)
- (2024年)传染病培训课件
- 沙盘游戏大纲
- 餐厅小票打印模板
评论
0/150
提交评论