2023年唐山海运职业学院高职单招(数学)试题库含答案解析_第1页
2023年唐山海运职业学院高职单招(数学)试题库含答案解析_第2页
2023年唐山海运职业学院高职单招(数学)试题库含答案解析_第3页
2023年唐山海运职业学院高职单招(数学)试题库含答案解析_第4页
2023年唐山海运职业学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年唐山海运职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.下列命题:

①用相关系数r来刻画回归的效果时,r的值越大,说明模型拟合的效果越好;

②对分类变量X与Y的随机变量的K2观测值来说,K2越小,“X与Y有关系”可信程度越大;

③两个随机变量相关性越强,则相关系数的绝对值越接近1;

其中正确命题的序号是

______.(写出所有正确命题的序号)答案:①是由于r可能是负值,要改为|r|的值越大,说明模型拟合的效果越好,故①错误,②对分类变量X与Y的随机变量的K2观测值来说,K2越大,“X与Y有关系”可信程度越大;故②正确③两个随机变量相关性越强,则相关系数的绝对值越接近1;故③正确,故为:③2.正方体的内切球和外接球的半径之比为

A.:1

B.:2

C.2:

D.:3答案:D3.下面是一个算法的伪代码.如果输出的y的值是10,则输入的x的值是______.答案:由题意的程序,若x≤5,y=10x,否则y=2.5x+5,由于输出的y的值是10,当x≤5时,y=10x=10,得x=1;当x>5时,y=2.5x+5=10,得x=2,不合,舍去.则输入的x的值是1.故为:1.4.在边长为1的正方形中,有一个封闭曲线围成的阴影区域,在正方形中随机的撒入100粒豆子,恰有60粒落在阴影区域内,那么阴影区域的面积为______.

答案:设阴影部分的面积为x,由概率的几何概型知,则60100=x1,解得x=35.故为:35.5.(不等式选讲选做题)已知a,b,c∈R+,且a+b+c=1,则3a+1+3b+1+3c+1的最大值为______.答案:根据柯西不等式,可得(3a+1+3b+1+3c+1)2=(1?3a+1+1?3b+1+1?3c+1)2≤(12+12+12)[(3a+1)2+(3b+1)2+(3c+1)2]=3[3(a+b+c)+3]=18当且仅当3a+1=3b+1=3c+1),即a=b=c=13时,(3a+1+3b+1+3c+1)2的最大值为18因此3a+1+3b+1+3c+1的最大值为32.故为:326.(选做题)方程ρ=cosθ与(t为参数)分别表示何种曲线(

)。答案:圆,双曲线7.已知函数f(x)=ax,(a>0,a≠1)的图象经过点P(12,12),则常数a的值为()A.2B.4C.12D.14答案:∵函数f(x)=ax,(a>0,a≠1)的图象经过点P(12,12),∴a12=12,?a=14.故选D.8.运行如图的程序,将自然数列0,1,2,…依次输入作为a的值,则输出结果x为______.

答案:当n=2时,x=5×6+0=30,当n=1时,x=30×6+1=181,当n=0时,x=181×6+2=1088,故为:10889.如果执行程序框图,那么输出的S=()A.2450B.2500C.2550D.2652答案:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出:S=2×1+2×2+…+2×50的值.∵S=2×1+2×2+…+2×50=2×1+502×50=2550故选C10.命题“当AB=AC时,△ABC是等腰三角形”与它的逆命题、否命题、逆否命题这四个命题中,真命题有______个.答案:原命题为真命题.逆命题“当△ABC是等腰三角形时,AB=AC”为假命题.否命题“当AB≠AC时,△ABC不是等腰三角形”为假命题.逆否命题“当△ABC不是等腰三角形时,AB≠AC”为真命题.故为:2.11.若x、y∈R+且x+2y≤ax+y恒成立,则a的最小值是()A.1B.2C.3D.1+22答案:由题意,根据柯西不等式得x+2y≤(1+2)(x+y)∴x+2y≤3(x+y)要使x+2y≤ax+y恒成立,∴a≥3∴a的最小值是3故选C.12.直线l1:x+ay=2a+2与直线l2:ax+y=a+1平行,则a=______.答案:直线l1:x+ay=2a+2即x+ay-2a-2=0;直线l2:ax+y=a+1即ax+y-a-1=0,∵直线l1与直线l2互相平行∴当a≠0且a≠-1时,1a=a1≠-2a-2-a-1,解之得a=1当a=0时,两条直线垂直;当a=-1时,两条直线重合故为:113.要考察某种品牌的850颗种子的发芽率,抽取60粒进行实验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第8行第11列的数1开始向右读,请你依次写出最先检测的4颗种子的编号______,______,______,______.

(下面摘取了随机数表第7行至第9行的一部分)

84

42

17

53

31

57

24

55

06

88

77

04

74

47

67

21

76

33

50

25

63

01

63

78

59

16

95

55

67

19

98

10

50

71

75

12

86

73

58

07

44

39

52

38

79

33

21

12

34

29

78

64

56

07

82

52

42

07

44

38.答案:由于随机数表中第8行的数字为:63

01

63

78

59

16

95

5567

19

98

10

50

71

75

12

86

73

58

07其第11列数字为1,故产生的第一个数字为:169,第二个数字为:555,第三个数字为:671,第四个数字为:998(超出编号范围舍)第五个数字为:105故为:169,555,671,10514.某农科所种植的甲、乙两种水稻,连续六年在面积相等的两块稻田中作对比试验,试验得出平均产量==415㎏,方差是=794,=958,那么这两个水稻品种中产量比较稳定的是()

A.甲

B.乙

C.甲、乙一样稳定

D.无法确定答案:A15.已知A(-4,6,-1),B(4,3,2),则下列各向量中是平面AOB(O是坐标原点)的一个法向量的是()A.(0,1,6)B.(-1,2,-1)C.(-15,4,36)D.(15,4,-36)答案:设平面AOB(O是坐标原点)的一个法向量是u=(x,y,z)则u•OA=0u•OB=0,即-4x+6y-z=04x+3y+2z=0,令x=-1,解得x=-1y=2z=-1,故u=(-1,2,-1),故选B.16.点M的直角坐标为(-3,-1),则点M的极坐标为______.答案:∵M的直角坐标为(-3,-1),设M的极坐标为(ρ,θ),则ρ=(-3)2+(-1)2=2,又tanθ=33,∴θ=7π6,∴M的极坐标为(2,7π6).17.已知复数z0=1-mi(m>0),z=x+yi和,其中x,y,x',y'均为实数,i为虚数单位,且对于任意复数z,有w=.z0•.z,|w|=2|z|.

(Ⅰ)试求m的值,并分别写出x'和y'用x、y表示的关系式:

(Ⅱ)将(x、y)用为点P的坐标,(x'、y')作为点Q的坐标,上述关系式可以看作是坐标平面上点的一个变换:它将平面上的点P变到这一平面上的点Q.已知点P经该变换后得到的点Q的坐标为(3,2),试求点P的坐标;

(Ⅲ)若直线y=kx上的任一点经上述变换后得到的点仍在该直线上,试求k的值.答案:(I)由题设得,|w|=|.z0•.z|=|z0||z|=2|z|,∴|z0|=2,由1+m2=4,且m>0,得m=3,∴z0=1-3i,∵w=.z0•.z,∴x′+y′i=.(1-3i)•.(x+yi))=(1+3i)(x-yi)=x+3y+(3x-y)i,由复数相等得,x′=x+3yy′=3x-y,(Ⅱ)由(I)和题意得,x+3y=33x-y=2,解得x=343y=14

,即P点的坐标为(343,14).

(Ⅲ)∵直线y=kx上的任意点P(x,y),其经变换后的点Q(x+3y,3x-y)仍在该直线上,∴3x-y=k(x+3y),即(3k+1)y=(3-k)x∵当k=0时,y=0,y=3x不是同一条直线,∴k≠0,于是3k+11=3-kk,即3k2+2k-3=0,解得k=33或k=-318.(参数方程与极坐标选讲)在极坐标系中,圆C的极坐标方程为:ρ2+2ρcosθ=0,点P的极坐标为(2,π2),过点P作圆C的切线,则两条切线夹角的正切值是______.答案:圆C的极坐标方程ρ2+2ρcosθ=0,化为普通方程为x2+y2+2x=0,即(x-1)2+y2=1.它表示以C(1,0)为圆心,以1为半径的圆.点P的极坐标为(2,π2),化为直角坐标为(0,2).设两条切线夹角为2θ,则sinθ=15,cosθ25,故tanθ=12.再由tan2θ=2tanθ1-tan2θ=43,故为43.19.已知|a|=1,|b|=2,a与b的夹角为60°,则a+b在a方向上的投影为______.答案:∵|a|=1,|b|=2,a与b的夹角为60°,∴a?b=a|×|b|×cos60°=1由此可得(a+b)2=|a|2+2a?b+|b|2=1+2+4=7∴|a+b|=7.设a+b与a的夹角为θ,则∵(a+b)?a=|a|2+a?b=2∴cosθ=(a+b)?a|a+b|?|a|=277,可得向量a+b在a方向上的投影为|a+b|cosθ=7×277=2故为:220.已知平面向量.a,b的夹角为60°,.a=(3,1),|b|=1,则|.a+2b|=______.答案:∵平面向量.a,b的夹角为60°,.a=(3,1),∴|.a|=2.b2

再由|b|=1,可得.a?b=2×1cos60°=1,∴|.a+2b|=(.a+2b)2=a2+4a?b+4b2=23,故为23.21.求下列函数的定义域及值域.

(1)y=234x+1;

(2)y=4-8x.答案:(1)要使函数y=234x+1有意义,只需4x+1≠0,即x≠-14,所以,函数的定义域为{x|x≠-14}.设y=2u,u=34x+1≠0,则u>0,由函数y=2u,得y≠20=1,所以函数的值域为{y|0<y且y≠1}.(2)由4-8x≥0,得x≤23,所以函数的定义域为{x|x≤23}.因0≤4-8x<4,所以0≤y<2,所以函数的值域为[0,2).22.在三棱锥O-ABC中,M,N分别是OA,BC的中点,点G是MN的中点,则OG可用基底{OA,OB,OC}表示成:OG=______.答案:如图,连接ON,在△OBC中,点N是BC中点,则由平行四边形法则得ON=12(OB+OC)在△OMN中,点G是MN中点,则由平行四边形法则得OG=12(OM+ON)=12OM+12ON=14OA+12•12(OB+OC)14(OA+OB+OC),故为:14(OA+OB+OC).23.函数y=2x的值域为______.答案:因为:x≥0,所以:y=2x≥20=1.∴函数y=2x的值域为:[1,+∞).故为:[1,+∞).24.曲线(θ为参数)上的点到两坐标轴的距离之和的最大值是()

A.

B.

C.1

D.答案:D25.双曲线的实轴长和焦距分别为()

A.

B.

C.

D.答案:C26.x+y+z=1,则2x2+3y2+z2的最小值为()

A.1

B.

C.

D.答案:C27.(本小题满分10分)如图,D、E分别是AB、AC边上的点,且不与顶点重合,已知为方程的两根

(1)证明四点共圆

(2)若求四点所在圆的半径答案:(1)见解析;(2)解析:解:(Ⅰ)如图,连接DE,依题意在中,,由因为所以,∽,四点C、B、D、E共圆。(Ⅱ)当时,方程的根因而,取CE中点G,BD中点F,分别过G,F做AC,AB的垂线,两垂线交于点H,连接DH,因为四点C、B、D、E共圆,所以,H为圆心,半径为DH.,,所以,,点评:此题考查平面几何中的圆与相似三角形及方程等概念和性质。注意把握判定与性质的作用。28.求由曲线围成的图形的面积.答案:面积为解析:当,时,方程化成,即.上式表示圆心在,半径为的圆.所以,当,时,方程表示在第一象限的部分以及轴,轴负半轴上的点,.同理,当,时,方程表示在第四象限的部分以及轴负半轴上的点;当,时,方程表示圆在第二象限的部分以及轴负半轴上的点;当,时,方程表示圆在第三象限部分.以上合起来构成如图所示的图形,面积为.29.正方体AC1中,S,T分别是棱AA1,A1B1上的点,如果∠TSC=90°,那么∠TSB=______.答案:由题意,BC⊥平面A1B,∵S,T分别是棱AA1,A1B1上的点,∴BC⊥ST∵∠TSC=90°,∴ST⊥SC∵BC∩SC=C∴ST⊥平面SBC∴ST⊥SB∴∠TSB=90°,故为:90°30.甲盒子中装有3个编号分别为1,2,3的小球,乙盒子中装有5个编号分别为1,2,3,4,5的小球,从甲、乙两个盒子中各随机取一个小球,则取出两小球编号之积为奇数的概率为______.答案:由题意知本题是一个等可能事件的概率,试验发生包含的事件是从两个盒子中分别取一个小球,共有3×5=15种结果,满足条件的事件是取出的两个小球编号之积是奇数,可以列举出有(1,1),(1,3),(1,5),(3,1),(3,3),(3,5)共有6种结果,∴要求的概率是615=25.故为25.31.直线被圆x2+y2=9截得的弦长为(

A.

B.

C.

D.答案:B32.为了评价某个电视栏目的改革效果,在改革前后分别从居民点抽取了100位居民进行调查,经过计算K2≈0.99,根据这一数据分析,下列说法正确的是()

A.有99%的人认为该栏目优秀

B.有99%的人认为该栏目是否优秀与改革有关系

C.有99%的把握认为电视栏目是否优秀与改革有关系

D.没有理由认为电视栏目是否优秀与改革有关系答案:D33.抛物线y=x2的焦点坐标是()

A.(,0)

B.(0,)

C.(0,1)

D.(1,0)答案:C34.α为第一象限角是sinαcosα>0的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:若α为第一象限角,则sinα>0,cosα>0,所以sinαcosα>0,成立.若sinαcosα>0,则①sinα>0,cosα>0,此时α为第一象限角.或②sinα<0,cosα<0,此时α为第三象限角.所以α为第一象限角是sinαcosα>0的充分不必要条件.故选A.35.甲、乙两位运动员在5场比赛的得分情况如茎叶图所示,记甲、乙两人的平均得分分别为.x甲,.x乙,则下列判断正确的是()A..x甲>.x乙;甲比乙成绩稳定B..x甲>.x乙;乙比甲成绩稳定C..x甲<.x乙;甲比乙成绩稳定D..x甲<.x乙;乙比甲成绩稳定答案:5场比赛甲的得分为16、17、28、30、34,5场比赛乙的得分为15、26、28、28、33∴.x甲=15(16+17+28+30+34)=25,.x乙=15(15+26+28+28+33)=26s甲2=15(81+64+9+25+81)=52,s乙2=15(121+4+4+49)=35.6∴.x甲<.x乙,乙比甲成绩稳定故选D.36.已知集合A={1,2,3},集合B={4,5},映射f:A→B,且满足1对应的元素是4,则这样的映射有()A.2个B.4个C.8个D.9个答案:∵满足1对应的元素是4,集合A中还有两个元素2和3,2可以和4对应,也可以和5对应,3可以和4对应,也可以和5对应,每个元素有两种不同的对应,∴共有2×2=4种结果,故选B.37.集合{1,2,3}的真子集总共有()A.8个B.7个C.6个D.5个答案:集合{1,2,3}的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7个.故选B.38.已知=2+i,则复数z=()

A.-1+3i

B.1-3i

C.3+i

D.3-i答案:B39.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过3个小时,这种细菌由1个可繁殖成()

A.511个

B.512个

C.1023个

D.1024个答案:B40.已知抛物线x2=4y上的点p到焦点的距离是10,则p点坐标是

______.答案:根据抛物线方程可求得焦点坐标为(0,1)根据抛物线定义可知点p到焦点的距离与到准线的距离相等,∴yp+1=10,求得yp=9,代入抛物线方程求得x=±6∴p点坐标是(±6,9)故为:(±6,9)41.已知一次函数f(x)=4x+3,且f(ax+b)=8x+7,则a-b=______.答案:∵f(x)=4x+3,f(ax+b)=4(ax+b)+3=4ax+4b+3=8x+7,∴4a=84b+3=7,解得a=2,b=1,∴a-b=1.故为:1.42.若直线y=x+b与圆x2+y2=2相切,则b的值为

______.答案:由题意知,直线y=x+b与圆x2+y2=2相切,∴2=|b|2,解得b=±2.故为:±2.43.在平面直角坐标系中,双曲线Γ的中心在原点,它的一个焦点坐标为(5,0),e1=(2,1)、e2=(2,-1)分别是两条渐近线的方向向量.任取双曲线Γ上的点P,若OP=ae1+be2(a、b∈R),则a、b满足的一个等式是______.答案:因为e1=(2,1)、e2=(2,-1)是渐进线方向向量,所以双曲线渐近线方程为y=±12x,又c=5,∴a=2,b=1双曲线方程为x24-y2=1,OP=ae1+be2=(2a+2b,a-b),∴(2a+2b)24-(a-b)2=1,化简得4ab=1.故为4ab=1.44.如图,△ABC中,D,E,F分别是边BC,AB,CA的中点,在以A、B、C、D、E、F为端点的有向线段中所表示的向量中,

(1)与向量FE共线的有

______.

(2)与向量DF的模相等的有

______.

(3)与向量ED相等的有

______.答案:(1)∵EF是△ABC的中位线,∴EF∥BC且EF=12BC,则与向量FE共线的向量是BC、BD、DC、CB、DB、CD;(2))∵DF是△ABC的中位线,∴DF∥AC且DF=12AC,则与向量DF的模相等的有CE,EA,EC,AF;(3)∵DE是△ABC的中位线,∴DE∥AB且DE=12AB,则与向量ED相等的有AF,FB.45.如图,空间四边形ABCD中,M、G分别是BC、CD的中点,则AB+12BC+12BD等()A.ADB.GAC.AGD.MG答案:∵M、G分别是BC、CD的中点,∴12BC=BM,12BD=MC∴AB+12BC+12BD=AB+BM+MC=AM+MC=AC故选C46.{,,}=是空间向量的一个基底,设=+,=+,=+,给出下列向量组:①{,,},②{,},③{,,},④{,,},其中可以作为空间向量基底的向量组有()组.

A.1

B.2

C.3

D.4答案:C47.曲线xy=1的参数方程不可能是()

A.

B.

C.

D.答案:B48.若一点P的极坐标是(r,θ),则它的直角坐标如何?答案:由题意可知x=rcosθ,y=rsinθ.所以点P的极坐标是(r,θ)的直角坐标为:(rcosθ,rsinθ).49.椭圆x29+y216=1上一动点P到两焦点距离之和为()A.10B.8C.6D.不确定答案:根据椭圆的定义,可知动点P到两焦点距离之和为2a=8,故选B.50.抛掷甲、乙两骰子,记事件A:“甲骰子的点数为奇数”;事件B:“乙骰子的点数为偶数”,则P(B|A)的值等于()

A.

B.

C.

D.答案:B第2卷一.综合题(共50题)1.定义:若函数f(x)对于其定义域内的某一数x0,有f(x0)=x0,则称x0是f(x)的一个不动点。

已知函数f(x)=ax2+(b+1)x+b-1(a≠0)。

(1)当a=1,b=-2时,求函数f(x)的不动点;

(2)若对任意的实数b,函数f(x)恒有两个不动点,求a的取值范围;

(3)在(2)的条件下,若y=f(x)图象上两个点A、B的横坐标是函数f(x)的不动点,且A、B的中点C在函数g(x)=-x+的图象上,求b的最小值。

(参考公式:A(x1,y1),B(x2,y2)的中点坐标为)

答案:解:(1)f(x)=x2-x-3,由x2-x-3=0,解得x=3或x=-1,所以所求的不动点为-1或3。(2)令ax2+(b+1)x+b+1=x,则ax2+bx+b-1=0,①由题意,方程①恒由两个不等实根,所以△=b2-4a(b-1)>0,即b2-4ab+4a>0对任意的b∈R恒成立,则△′=16a2-16a<0,故0(3)依题意,设,则AB中点C的坐标为,又AB的中点在直线上,∴,∴,又x1,x2是方程①的两个根,∴,∴,,∴,∴当时,bmin=-1。</a<1。2.对任意实数x,y,定义运算x*y为:x*y=ax+by+cxy,其中a,b,c为常数,等式右端运算为通常的实数加法和乘法,现已知1*2=3,2*3=4,并且有一个非零实数m,使得对于任意的实数都有x*m=x,则d的值为(

A.4

B.1

C.0

D.不确定答案:A3.某自动化仪表公司组织结构如图所示,其中采购部的直接领导是()

A.副总经理(甲)

B.副总经理(乙)

C.总经理

D.董事会

答案:B4.如图,正方体ABCD-A1B1C1D1的棱长为1.

(1)求A1C与DB所成角的大小;

(2)求二面角D-A1B-C的余弦值;

(3)若点E在A1B上,且EB=1,求EC与平面ABCD所成角的大小.答案:(1)如图建立空间直角坐标系C-xyz,则C(0,0,0),D(1,0,0),B(0,1,0),A1(1,1,1).∴DB=(-1,1,0),CA1=(1,1,1).∴cos<DB,CA1>=DB•CA1|DB|•|CA1|=02•3=0.∴A1C与DB所成角的大小为90°.(2)设平面A1BD的法向量n1=(x,y,z),则n1⊥DB,n1⊥A1B,可得-x+y=0x+z=0,∴n1=(1,1,-1).同理可求得平面A1BC的一个法向量n2=(1,0,-1),∴cos<n1,n2>=n1•n2|n1|•|n2|=26=63,∴二面角D-A1B-C的余弦值为63.(3)设n=(0,0,1)是平面ABCD的一个法向量,且CE=(22,1,22),∴cos<n,CE>=n•CE|n|•|CE|=12,∴<n,CE>=60°,∴EC与平面ABCD所成的角是30°.5.已知双曲线的两条准线将两焦点间的线段三等分,则双曲线的离心率是______.答案:由题意可得2c×13=2a2c,∴3a2=c2,∴e=ca=3,故为:3.6.若=(2,-3,1),=(2,0,3),=(0,2,2),则•(+)=()

A.4

B.15

C.7

D.3答案:D7.对任意实数x,y,定义运算x*y=ax+by+cxy,其中a,b,c是常数,等式右边的运算是通常的加法和乘法运算。已知1*2=3,2*3=4,并且有一个非零常数m,使得对任意实数x,都有x*m=x,则m的值是(

)。答案:48.在复平面上,设点A,B,C对应的复数分别为i,1,4+2i,过A、B、C作平行四边形ABCD,则平行四边形对角线BD的长为______.答案:∵点A,B,C对应的复数分别为i,1,4+2i∴A(0,1),B(1,0),C(4,2)设D(x,y)∴AD=BC=(3,2)∴D(3,3)∴对角线BD的长度是4+9=13故为:139.已知抛物线x2=4y上的点p到焦点的距离是10,则p点坐标是

______.答案:根据抛物线方程可求得焦点坐标为(0,1)根据抛物线定义可知点p到焦点的距离与到准线的距离相等,∴yp+1=10,求得yp=9,代入抛物线方程求得x=±6∴p点坐标是(±6,9)故为:(±6,9)10.整数630的正约数(包括1和630)共有______个.答案:首先将630分解质因数630=2×32×5×7;然后注意到每一因数可出现的次幂数,如2可有20,21两种情况,3有30,31,32三种情况,5有50,51两种情况,7有70,71两种情况,按分步计数原理,整数630的正约数(包括1和630)共有2×3×2×2=24个.故为:24.11.下表是关于某设备的使用年限(年)和所需要的维修费用y(万元)的几组统计数据:

x23456y2.23.85.56.57.0(1)请在给出的坐标系中画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程

y=

bx+

a;

(3)估计使用年限为10年时,维修费用为多少?

(参考数值:2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3).答案:(1)根据所给的数据,得到对应的点的坐标,写出点的坐标,在坐标系描出点,得到散点图,(2)∵5i=1xi2=4+9+16+25+36=90

且.x=4,.y=5,n=5,∴̂b=112.3-5×4×590-5×16=12.310=1.23̂a=5-1.23×4=0.08∴回归直线为y=1.23x+0.08.(3)当x=10时,y=1.23×10+0.08=12.38,所以估计当使用10年时,维修费用约为12.38万元.12.若点M是△ABC的重心,则下列向量中与AB共线的是______.(填写序号)

(1)AB+BC+AC

(2)AM+MB+BC

(3)AM+BM+CM

(4)3AM+AC.答案:对于(1)AB+BC+AC=2AC不与AB共线对于(2)AM+MB+BC=AB+BC=AC不与AB对于(3)AM+BM+CM=13(AB+AC)+13(BA+BC)+13(CA+CB)=0与AB对于(4)3AM+AC=AB+AC+AC不与AB故为:(3)13.动点P到直线x+2=0的距离减去它到M(1,0)的距离之差等于1,则动点P的轨迹是______.答案:将直线x+2=0向右平移1个长度单位得到直线x+1=0,则动点到直线x+1=0的距离等于它到M(1,0)的距离,由抛物线定义知:点P的轨迹是以点M为焦点的抛物线.:以点M为焦点以x=-1为准线的抛物线.14.已知a=(1,2),则|a|=______.答案:∵a=(1,2),∴|a|=12+22=5.故为5.15.根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80mg/100mL(不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100mL(含80)以上时,属醉酒驾车.据有关报道,2009年8月15日至8

月28日,某地区查处酒后驾车和醉酒驾车共500人,如图是对这500人血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为()A.25B.50C.75D.100答案:∵血液酒精浓度在80mg/100ml(含80)以上时,属醉酒驾车,通过频率分步直方图知道属于醉驾的频率是(0.005+0.01)×10=0.15,∵样本容量是500,∴醉驾的人数有500×0.15=75故选C.16.有以下四个结论:

①lg(lg10)=0;

②lg(lne)=0;

③若e=lnx,则x=e2;

④ln(lg1)=0.

其中正确的是()

A.①②

B.①②③

C.①②④

D.②③④答案:A17.设15000件产品中有1000件次品,从中抽取150件进行检查,则查得次品数的数学期望为______.答案:∵15000件产品中有1000件次品,从中抽取150件进行检查,∴查得次品数的数学期望为150×100015000=10.故为10.18.命题“每一个素数都是奇数”的否定是______.答案:原命题“每一个素数都是奇数”是一个全称命题它的否定是一个特称命题,即“有的素数不是奇数”故为:有的素数不是奇数19.当a>0时,设命题P:函数f(x)=x+ax在区间(1,2)上单调递增;命题Q:不等式x2+ax+1>0对任意x∈R都成立.若“P且Q”是真命题,则实数a的取值范围是()A.0<a≤1B.1≤a<2C.0≤a≤2D.0<a<1或a≥2答案:∵函数f(x)=x+ax在区间(1,2)上单调递增;∴f′(x)≥0在区间(1,2)上恒成立,∴1-ax2≥0在区间(1,2)上恒成立,即a≤x2在区间(1,2)上恒成立,∴a≤1.且a>0…①又不等式x2+ax+1>0对任意x∈R都成立,∴△=a2-4<0,∴-2<a<2…②若“P且Q”是真命题,则P且Q都是真命题,故由①②的交集得:0<a≤1,则实数a的取值范围是0<a≤1.故选A.20.设复数z=lg(m2-2m-2)+(m2+3m+2)i,试求实数m的取值范围,使得:

(1)z是纯虚数;

(2)z是实数;

(3)z对应的点位于复平面的第二象限.答案:(1)若z=lg(m2-2m-2)+(m2+3m+2)i是纯虚数,则可得lg(m2-2m-2)=0m2+3m+2≠0,即m2-2m-2=1m2+3m+2≠0,解之得m=3(舍去-1);…(3分)(2)若z=lg(m2-2m-2)+(m2+3m+2)i是实数,则可得m2+3m+2=0,解之得m=-1或m=-2…(6分)(3)∵z=lg(m2-2m-2)+(m2+3m+2)i对应的点坐标为(lg(m2-2m-2),m2+3m+2)∴若该对应点位于复平面的第二象限,则可得lg(m2-2m-2)<0m2+3m+2>0,即0<m2-2m-2<1m2+3m+2>0,解之得-1<m<1-3或1+3<m<3.…(10分)21.编程序,求和s=1!+2!+3!+…+20!答案:s=0n=1t=1WHILE

n<=20s=s+tn=n+1t=t*nWENDPRINT

sEND22.抛物线y=ax2(其中a>0)的焦点坐标是(

A.(,0)

B.(0,)

C.(,0)

D.(0,)答案:D23.对于非零的自然数n,抛物线y=(n2+n)x2-(2n+1)x+1与x轴相交于An,Bn两点,若以|AnBn|表示这两点间的距离,则|A1B1|+|A2B2|+|A3B3|+┅+|A2009B2009|的值

等于______.答案:令(n2+n)x2-(2n+1)x+1=0,得x1=1n,x2=1n+1所以An(1n,0),Bn(1n+1,0)所以|AnBn|=1n-1n+1,所以|A1B1|+|A2B2|+|A3B3|+┅+|A2009B2009|=(11-12)+(12-13)+┉+(12009-12010)=1-12010=20092010.故为:20092010.24.已知AB和CD是曲线(t为参数)的两条相交于点P(2,2)的弦,若AB⊥CD,且|PA|·|PB|=|PC|·

|PD|,

(Ⅰ)将曲线(t为参数)化为普通方程,并说明它表示什么曲线;

(Ⅱ)试求直线AB的方程。答案:解:(Ⅰ)由y=4t得y2=16t2,而x=4t2,∴y2=4x,它表示抛物线;(Ⅱ)设直线AB和CD的倾斜角分别为α,β,则直线AB和CD的参数方程分别为,把①代入y2=4x中,得t2sin2α+(4sinα-4cosα)t-4=0,③依题意知sinα≠0且方程③的判别式Δ=16(sinα-cosα)2+16sin2α>0,∴方程③有两个不相等的实数解t1,t2,则由t的几何意义知|PA|=|t1|,|PB|=|t2|,∴|PA|·|PB|=|t1t2|=,同理|PC|·|PD|=,由|PA|·|PB|=|PC|·|PD|知,即sin2α=sin2β,∵0≤α,β<π,∴α=π-β,∵AB⊥CD,∴β=α+90°或α=β+90°,∴直线AB的倾斜角∴kAB=1或kAB=-1,故直线AB的方程为y=x或x+y-4=0。25.在(1+x)3+(1+x)4…+(1+x)7的展开式中,含x项的系数是______.(用数字作答)答案:(1+x)3+(1+x)4…+(1+x)7的展开式中,含x项的系数是C31+C41+C51+…+C71=25故为:2526.已知按向量平移得到,则

.答案:3解析:由平移公式可得解得.27.①点P在△ABC所在的平面内,且②点P为△ABC内的一点,且使得取得最小值;③点P是△ABC所在平面内一点,且,上述三个点P中,是△ABC的重心的有()

A.0个

B.1个

C.2个

D.3个答案:D28.设函数f(x)=(1-2a)x+b是R上的增函数,则()A.a>12B.a<12C.a≥12D.a≤12答案:∵函数f(x)=(1-2a)x+b是R上的增函数,∴1-2a>0,∴a<12.故选B.29.在极坐标系中,圆ρ=-2cosθ的圆心的极坐标是()

A.(1,)

B.(1,-)

C.(1,0)

D.(1,π)答案:D30.(上海卷理3文8)动点P到点F(2,0)的距离与它到直线x+2=0的距离相等,则P的轨迹方程为______.答案:由抛物线的定义知点P的轨迹是以F为焦点的抛物线,其开口方向向右,且p2=2,解得p=4,所以其方程为y2=8x.故为y2=8x31.若k∈R,则“k>3”是“方程表示双曲线”的()

A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件答案:A32.圆锥的侧面展开图是一个半径长为4的半圆,则此圆锥的底面半径为

______.答案:设圆锥的底面半径为R,则由题意得,2πR=π×4,即R=2,故为:2.33.如图是一个空间几何体的三视图,试用斜二测画法画出它的直观图.(尺寸不作严格要求,但是凡是未用铅笔作图不得分,随手画图也不得分)答案:由题可知题目所述几何体是正六棱台,画法如下:画法:(1)、画轴画x轴、y轴、z轴,使∠x′O′y′=45°,∠x′O′z′=90°

(图1)(2)、画底面以O′为中心,在XOY坐标系内画正六棱台下底面正方形的直观图ABCDEF.在z′轴上取线段O′O1等于正六棱台的高;过O1

画O1M、O1N分别平行O’x′、O′y′,再以O1为中心,画正六棱台上底面正方形的直观图A′B′C′E′F′(3)、成图连接AA′、BB′、CC′、DD′、EE′、FF′,并且加以整理,就得到正六棱台的直观图

(如图2).34.袋中有5个小球(3白2黑),现从袋中每次取一个球,不放回地抽取两次,则在第一次取到白球的条件下,第二次取到白球的概率是()

A.

B.

C.

D.答案:C35.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X、Y,则log2XY=1的概率为()A.16B.536C.112D.12答案:∵log2XY=1∴Y=2X,满足条件的X、Y有3对而骰子朝上的点数X、Y共有36对∴概率为336=112故选C.36.如图表示空间直角坐标系的直观图中,正确的个数为()

A.1个

B.2个

C.3个

D.4个答案:C37.若随机向一个半径为1的圆内丢一粒豆子(假设该豆子一定落在圆内),则豆子落在此圆内接正三角形内的概率是______.答案:∵圆O是半径为R=1,圆O的面积为πR2=π则圆内接正三角形的边长为3,而正三角形ABC的面积为343,∴豆子落在正三角形ABC内的概率P=334π=334π故为:334π38.直线y=2x+1的参数方程是()

A.(t为参数)

B.(t为参数)

C.(t为参数)

D.(θ为参数)

答案:B39.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()A.{3,5}B.{3,6}C.{3,7}D.{3,9}答案:因为A∩B={1,3,5,7,9}∩{0,3,6,9,12}={3,9}故选D40.直线x=1和函数y=f(x)的图象的公共点的个数为______.答案:由函数定义知当函数在x=1处有定义时,直线x=1和函数y=f(x)的图象的公共点的个数为1,若函数在x=1处有无定义时,直线x=1和函数y=f(x)的图象的公共点的个数为0故线x=1和函数y=f(x)的图象的公共点的个数为0或1故为0或141.关于x的方程x2+4x+k=0有一个根为-2+3i(i为虚数单位),则实数k=______.答案:由韦达定理(一元二次方程根与系数关系)可得:x1•x2=k∵k∈Rx1=-2+3i,∴x2=-2-3i,则k=(-2-3i)(-2+3i)=13故为:1342.设抛物线y2=8x上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是()A.4B.6C.8D.12答案:抛物线y2=8x的准线为x=-2,∵点P到y轴的距离是4,∴到准线的距离是4+2=6,根据抛物线的定义可知点P到该抛物线焦点的距离是6故选B43.如图,已知⊙O的直径AB=5,C为圆周上一点,BC=4,过点C作⊙O的切线l,过点A作l的垂线AD,垂足为D,则CD=______.

答案:如图,连接OC,由题意DC是切线可得出OC⊥DC,再过过A作AE⊥OC于E,故有四边形AECD是矩形,可得AE=CD又⊙O的直径AB=5,C为圆周上一点,BC=4,∴AC=3故S△AOC=12S△ABC=12×12×4×3=3又OC=52,故12×52×AE=3解得AE=125所以CD=125故为:125.44.设抛物线x2=12y的焦点为F,经过点P(2,1)的直线l与抛物线相交于A、B两点,若点P恰为线段AB的中点,则|AF|+|BF|=______.答案:过点A,B,P分别作抛物线准线y=-3的垂线,垂足为C,D,Q,据抛物线定义,得|AF|+|BF|=|AC|+|BD|=2|PQ|=8.故为845.设xi,yi

(i=1,2,…,n)是实数,且x1≥x2≥…≥xn,y1≥y2≥…≥yn,而z1,z2,…,zn是y1,y2,…,yn的一个排列.求证:n

i-1(xi-yi)2≥n

i-1(xi-zi)2.答案:证明:要证ni-1(xi-yi)2≥ni-1(xi-zi)2,只需证

ni=1

yi2-2ni=1

xi•yi≥ni=1

zi2-2ni=1

xi•zi,由于ni=1

yi2=ni=1

zi2,故只需证ni=1

xi•zi≤ni=1

xi•yi

①.而①的左边为乱序和,右边为顺序和,根据排序不等式可得①成立,故要证的不等式成立.46.算法的有穷性是指()A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确答案:一个算法必须在有限步内结束,简单的说就是没有死循环即算法的步骤必须有限故选C.47.已知向量与的夹角为120°,若向量,且,则=()

A.2

B.

C.

D.答案:C48.若直线l经过点M(1,5),且倾斜角为2π3,则直线l的参数方程为______.答案:由于过点(a,b)倾斜角为α的直线的参数方程为x=a+t•cosαy=b+t•sinα(t是参数),∵直线l经过点M(1,5),且倾斜角为2π3,故直线的参数方程是x=1+t•cos2π3y=5+t•sin2π3即x=1-12ty=5+32t(t为参数).故为:x=1-12ty=5+32t(t为参数).49.若一元二次方程ax2+2x+1=0有一个正根和一个负根,则有

A.a<0

B.a>0

C.a<-1

D.a>1答案:A50.若非零向量满足,则()

A.

B.

C.

D.答案:C第3卷一.综合题(共50题)1.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是(

A.

B.

C.

D.答案:B2.设a,b,λ都为正数,且a≠b,对于函数y=x2(x>0)图象上两点A(a,a2),B(b,b2).

(1)若AC=λCB,则点C的坐标是______;

(2)过点C作x轴的垂线,交函数y=x2(x>0)的图象于D点,由点C在点D的上方可得不等式:______.答案:(1)设点C(x,y),因为点A(a,a2),B(b,b2),AC=λCB,则(x-a,y-a2)=λ(b-x,b2-y),所以:x=a+λb1+λ,y=a2+λb21+λ(2)因为点C在点D的上方,则y>yD,所以a2+λb21+λ>(a+λb1+λ)23.若则实数λ的值是()

A.

B.

C.

D.答案:D4.若非零向量满足,则()

A.

B.

C.

D.答案:C5.已知:空间四边形ABCD,AB=AC,DB=DC,求证:BC⊥AD.答案:取BC的中点为E,∵AB=AC,∴AE⊥BC.∵DB=DC,∴DE⊥BC.这样,BC就和平面ADE内的两条相交直线AE、DE垂直,∴BC⊥面ADE,∴BC⊥AD.6.已知f(x)=,则不等式xf(x)+x≤2的解集是(

)。答案:{x|x≤1}7.对于任意空间四边形,试证明它的一组对边中点的连线与另一组对边可平行于同一平面.答案:证明:如图所示,空间四边形ABCD,E、F分别为AB、CD的中点,利用多边形加法法则可得①又E、F分别是AB、CD的中点,故有②将②代入①后,两式相加得即与共面,∴EF与AD、BC可平行于同一平面.8.方程组的解集是[

]A.

B.{x,y|x=3且y=-7}

C.{3,-7}

D.{(x,y)|x=3且y=-7}答案:D9.已知定义在实数集上的偶函数y=f(x)在区间(0,+∞)上是增函数,那么y1=f(π3),y2=f(3x2+1)和y3=f(log214)之间的大小关系为()A.y1<y3<y2B.y1<y2<y3C.y3<y1<y2D.y3<y2<y1答案:∵偶函数y=f(x)在区间(0,+∞)上是增函数∴|x|越大,函数值就越大∵|3x2+1|≥3,|log214|=2∴|3x2+1|>|log214|>π3∴y1<y3<y2故选A10.在某路段检测点对200辆汽车的车速进行检测,检测结果表示为如图所示的频率分布直方图,则车速不小于90km/h的汽车有辆.()A.60B.90C.120D.150答案:频率=频率组距×组距=(0.02+0.01)×10=0.3,频数=频率×样本总数=200×0.3=60(辆).故选A.11.如图,弯曲的河流是近似的抛物线C,公路l恰好是C的准线,C上的点O到l的距离最近,且为0.4千米,城镇P位于点O的北偏东30°处,|OP|=10千米,现要在河岸边的某处修建一座码头,并修建两条公路,一条连接城镇,一条垂直连接公路l,以便建立水陆交通网.

(1)建立适当的坐标系,求抛物线C的方程;

(2)为了降低修路成本,必须使修建的两条公路总长最小,请给出修建方案(作出图形,在图中标出此时码头Q的位置),并求公路总长的最小值(精确到0.001千米)答案:(1)过点O作准线的垂线,垂足为A,以OA所在直线为x轴,OA的垂直平分线为y轴,建立平面直角坐标系…(2分)由题意得,p2=0.4…(4分)所以,抛物线C:y2=1.6x…(6分)(2)设抛物线C的焦点为F由题意得,P(5,53)…(8分)根据抛物线的定义知,公路总长=|QF|+|QP|≥|PF|≈9.806…(12分)当Q为线段PF与抛物线C的交点时,公路总长最小,最小值为9.806千米…(16分)12.斜二测画法的规则是:

(1)在已知图形中建立直角坐标系xoy,画直观图

时,它们分别对应x′和y′轴,两轴交于点o′,使∠x′o′y′=______,它们确定的平面表示水平平面;

(2)

已知图形中平行于x轴或y轴的线段,在直观图中分别画成

______;

(3)已知图形中平行于x轴的线段的长度,在直观图中

______;平行于y轴的线段,在直观图中

______.答案:按照斜二测画法的规则填空故为:(1)45°或135°;(2)平行于x′轴和y′轴;(3)长度不变;长度减半13.已知直线3x+2y-3=0和6x+my+1=0互相平行,则它们之间的距离是()

A.

B.

C.

D.答案:B14.如图所示,在几何体ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,点F是AE的中点.求AB与平面BDF所成角的正弦值.答案:AB与平面BDF所成角的正弦值为.解析:以点B为原点,BA、BC、BE所在的直线分别为x,y,z轴,建立如图所示的空间直角坐标系,则B(0,0,0),A(2,0,0),C(0,2,0),D(0,2,1),E(0,0,2),F(1,0,1).∴=(0,2,1),=(1,-2,0).设平面BDF的一个法向量为n=(2,a,b),∵n⊥,n⊥,∴即解得a=1,b=-2.∴n=(2,1,-2).设AB与平面BDF所成的角为,则法向量n与的夹角为-,∴cos(-)===,即sin=,故AB与平面BDF所成角的正弦值为.15.将两个数a=8,b=17交换,使a=17,b=8,下面语句正确一组是()

A.a=bb=a

B.c=b

b=a

a=c

C.b=aa=b

D.a=cc=bb=a答案:B16.若集合A={1,2,3},则集合A的真子集共有()A.3个B.5个C.7个D.8个答案:由集合A={1,2,3},所以集合A的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7个.故选C.17.下列函数中,定义域为(0,+∞)的是()A.y=1xB.y=xC.y=1x2D.y=12x答案:由于函数y=1x的定义域为(0,+∞),函数y=x的定义域为[0,+∞),函数y=1x2的定义域为{x|x≠0},函数y=12x的定义域为R,故只有A中的函数满足定义域为(0,+∞),故选A.18.已知向量a=(-2,1),b=(-3,-1),若单位向量c满足c⊥(a+b),则c=______.答案:设c=(x,y),∵向量a=(-2,1),b=(-3,-1),单位向量c满足c⊥(a+b),∴c•a+c•b=0,∴-2x+y-3x-y=0,解得x=0,∴c=(0,y),∵c是单位向量,∴0+y2=1,∴y=±1.故c=(0,1),或c=(0,-1).故为:(0,1)或(0,-1).19.因为样本是总体的一部分,是由某些个体所组成的,尽管对总体具有一定的代表性,但并不等于总体,为什么不把所有个体考查一遍,使样本就是总体?答案:如果样本就是总体,抽样调查就变成普查了,尽管这样确实反映了实际情况,但不是统计的基本思想,其操作性、可行性、人力、物力等方面,都会有制约因素存在,何况有些调查是破坏性的,如考查一批玻璃的抗碎能力,灯泡的使用寿命等,普查就全破坏了.20.设某批电子手表正品率为,次品率为,现对该批电子手表进行测试,设第X次首次测到正品,则P(X=3)等于()

A.

B.

C.

D.答案:C21.椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的两倍,则m的值为______.答案:方程x2+my2=1变为x2+y21m=1∵焦点在y轴上,长轴长是短轴长的两倍,∴1m=2,解得m=14故应填1422.①学校为了了解高一学生的情况,从每班抽2人进行座谈;②一次数学竞赛中,某班有10人在110分以上,40人在90~100分,12人低于90分.现在从中抽取12人了解有关情况;③运动会服务人员为参加400m决赛的6名同学安排跑道.就这三件事,合适的抽样方法为()A.分层抽样,分层抽样,简单随机抽样B.系统抽样,系统抽样,简单随机抽样C.分层抽样,简单随机抽样,简单随机抽样D.系统抽样,分层抽样,简单随机抽样答案:①是从较多的一个总体中抽取样本,且总体之间没有差异,故用系统抽样,②是从不同分数的总体中抽取样本,总体之间的差异比较大,故用分层抽样,③是六名运动员选跑道,用简单随机抽样,故选D.23.“x2>2012”是“x2>2011”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:由于“x2>2

012”时,一定有“x2>2

011”,反之不成立.所以“x2>2

012”是“x2>2

011”的充分不必要条件.故选A.24.若圆x2+y2=9上每个点的横坐标不变,纵坐标缩短为原来的,则所得到的曲线的方程是()

A.

B.

C.

D.答案:C25.某公司为庆祝元旦举办了一个抽奖活动,现场准备的抽奖箱里放置了分别标有数字1000、800﹑600、0的四个球(球的大小相同).参与者随机从抽奖箱里摸取一球(取后即放回),公司即赠送与此球上所标数字等额的奖金(元),并规定摸到标有数字0的球时可以再摸一次﹐但是所得奖金减半(若再摸到标有数字0的球就没有第三次摸球机会),求一个参与抽奖活动的人可得奖金的期望值是多少元.答案:设ξ表示摸球后所得的奖金数,由于参与者摸取的球上标有数字1000,800,600,0,当摸到球上标有数字0时,可以再摸一次,但奖金数减半,即分别为500,400,300,0.则ξ的所有可能取值为1000,800,600,500,400,300,0.依题意得P(ξ=1000)=P(ξ=800)=P(ξ=600)=14,P(ξ=500)=P(ξ=400)=P(ξ=300)=P(ξ=0)=116,则ξ的分布列为∴所求期望值为Eξ=14(1000+800+600)+116(500+400+300+0)=675元.26.设随机变量ζ~N(2,p),随机变量η~N(3,p),若,则P(η≥1)=()

A.

B.

C.

D.答案:D27.(本题满分12分)已知对任意的平面向量,把绕其起点沿逆时针方向旋转角,得到向量,叫做把点B绕点A逆时针方向旋转角得到点P

①已知平面内的点A(1,2),B,把点B绕点A沿逆时针方向旋转后得到点P,求点P的坐标

②设平面内曲线C上的每一点绕逆时针方向旋转后得到的点的轨迹是曲线,求原来曲线C的方程.答案:解:

……2分

……6分

解得x="0,y="-1

……7分②

…………10分

即…………11分又x’2-y’2="1

"……12分

……13分

化简得:

……14分解析:略28.已知a=3i+2j-k,b=i-j+2k,则5a与3b的数量积等于______.答案:a=3i+2j-k=(3,2,-1),5a=(15,10,-5)b=i-j+2k=(1,-1,2),3b=(3,-3,6)5a•3b=15×3+10×(-3)+(-5)×6=-15故为:-1529.某车间工人已加工一种轴100件,为了了解这种轴的直径,要从中抽出10件在同一条件下测量(轴的直径要求为(20±0.5)mm),如何采用简单随机抽样方法抽取上述样本?答案:本题是一个简单抽样,∵100件轴的直径的全体是总体,将其中的100个个体编号00,01,02,…,99,利用随机数表来抽取样本的10个号码,可以从表中的第20行第3列的数开始,往右读数,得到10个号码如下:16,93,32,43,50,27,89,87,19,20将上述号码的轴在同一条件下测量直径.30.某超市推出如下优惠方案:

(1)一次性购物不超过100元不享受优惠;

(2)一次性购物超过100元但不超过300元的一律九折;

(3)一次性购物超过300元的一律八折,有人两次购物分别付款80元,252元.

如果他一次性购买与上两次相同的商品,则应付款______.答案:该人一次性购物付款80元,据条件(1)、(2)知他没有享受优惠,故实际购物款为80元;另一次购物付款252元,有两种可能,其一购物超过300元按八折计,则实际购物款为2520.8=315元.其二购物超过100元但不超过300元按九折计算,则实际购物款为2520.9=280元.故该人两次购物总价值为395元或360元,若一次性购买这些商品应付款316元或288元.故为316元或288元.31.圆x2+y2=1和圆x2+y2-6y+5=0的位置关系是()

A.外切

B.内切

C.外离

D.内含答案:A32.某个几何体的三视图如图所示,则该几何体的体积是()A.23B.3C.334D.332答案:由三视图可知该几何体是直三棱柱,高为1,底面三角形一边长为2,此边上的高为3,所以V=Sh=12×2×3×1=3故选B.33.若三角形的内切圆半径为r,三边的长分别为a,b,c,则三角形的面积S=12r(a+b+c),根据类比思想,若四面体的内切球半径为R,四个面的面积分别为S1、S2、S3、S4,则此四面体的体积V=______.答案:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.故为:13R(S1+S2+S3+S4).34.“a2+b2≠0”的含义为()A.a和b都不为0B.a和b至少有一个为0C.a和b至少有一个不为0D.a不为0且b为0,或b不为0且a为0答案:a2+b2≠0的等价条件是a≠0或b≠0,即两者中至少有一个不为0,对照四个选项,只有C与此意思同,C正确;A中a和b都不为0,是a2+b2≠0充分不必要条件;B中a和b至少有一个为0包括了两个数都是0,故不对;D中只是两个数仅有一个为0,概括不全面,故不对;故选C35.给出的下列几个命题:

①向量共面,则它们所在的直线共面;

②零向量的方向是任意的;

③若则存在唯一的实数λ,使

其中真命题的个数为()

A.0

B.1

C.2

D.3答案:B36.命题:“方程X2-2=0的解是X=±2”中使用逻辑联系词的情况是()A.没有使用逻辑连接词B.使用了逻辑连接词“且”C.使用了逻辑连接词“或”D.使用了逻辑连接词“非”答案:命题:“方程X2-2=0的解是X=±2”可以化为:“方程X2-2=0的解是X=2,或X=-2”故命题:“方程X2-2=0的解是X=±2”中使用逻辑联系词为:或故选C37.经过原点,圆心在x轴的负半轴上,半径等于2的圆的方程是______.答案:∵圆过原点,圆心在x轴的负半轴上,∴圆心的横坐标的相反数等于圆的半径,又∵半径r=2,∴圆心坐标为(-2,0),由此可得所求圆的方程为(x+2)2+y2=2.故为:(x+2)2+y2=238.下列说法中正确的是()

A.以直角三角形的一边为轴旋转所得的旋转体是圆锥

B.以直角梯形的一腰为轴旋转所得的旋转体是圆台

C.圆柱、圆锥、圆台的底面都是圆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论