




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年六安职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.过A(-2,3),B(2,1)两点的直线的斜率是()
A.
B.
C.-2
D.2答案:B2.一元二次不等式ax2+bx+c≤0的解集是全体实数所满足的条件是(
)
A.
B.
C.
D.答案:D3.有这样一段“三段论”推理,对于可导函数f(x),大前提:如果f’(x0)=0,那么x=x0是函数f(x)的极值点;小前提:因为函数f(x)=x3在x=0处的导数值f’(0)=0,结论:所以x=0是函数f(x)=x3的极值点.以上推理中错误的原因是______错误(填大前提、小前提、结论).答案:∵大前提是:“对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点”,不是真命题,因为对于可导函数f(x),如果f'(x0)=0,且满足当x>x0时和当x<x0时的导函数值异号时,那么x=x0是函数f(x)的极值点,∴大前提错误,故为:大前提.4.设O是平行四边形ABCD的两条对角线AC与BD的交点,对于下列向量组:①AD与AB;②DA与BC;③CA与DC;④OD与OB.其中能作为一组基底的是______(只填写序号).答案:解析:由于①AD与AB不共线,③CA与DC不共线,所以都可以作为基底.②DA与BC共线,④OD与OB共线,不能作为基底.故为:①③.5.用反证法证明:已知x,y∈R,且x+y>2,则x,y中至少有一个大于1.答案:证明:用反证法,假设x,y均不大于1,即x≤1且y≤1,则x+y≤2,这与已知条件x+y>2矛盾,∴x,y中至少有一个大于1,即原命题得证.6.根据一组数据判断是否线性相关时,应选用()
A.散点图
B.茎叶图
C.频率分布直方图
D.频率分布折线图答案:A7.设=(-2,2,5),=(6,-4,4)分别是平面α,β的法向量,则平面α,β的位置关系是()
A.平行
B.垂直
C.相交但不垂直
D.不能确定答案:B8.关于x的方程mx2+2(m+3)x+2m+14=0有两实根,且一个大于4,一个小于4,求m的取值范围。答案:解:令f(x)=mx2+2(m+3)x+2m+14,依题意得或,即或,解得。9.已知正方体ABCD-A1B1C1D1,点E,F分别是上底面A1C1和侧面CD1的中心,求下列各式中的x,y的值:
(1)AC1=x(AB+BC+CC1),则x=______;
(2)AE=AA1+xAB+yAD,则x=______,y=______;
(3)AF=AD+xAB+yAA1,则x=______,y=______.答案:(1)根据向量加法的首尾相连法则,x=1;(2)由向量加法的三角形法则得,AE=AA1+A1E,由四边形法则和向量相等得,A1E=12(A1B1+A1D1)=12(AB+AD);∴AE=AA1+12AB+12AD,∴x=y=12;(3)由向量加法的三角形法则得,AF=AD+DF,由四边形法则和向量相等得,DF=12(DC+DD1)=12(AB+AA1);∴AF=AD+12AB+12AA1,∴x=y=12.10.如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD=8.BC是⊙O的直径,AB=AC=6,
OE∥AD.
(1)求二面角B-AD-F的大小;
(2)求直线BD与EF所成的角的余弦值.答案:(1)二面角B—AD—F的大小为45°(2)直线BD与EF所成的角的余弦值为解析:(1)∵AD与两圆所在的平面均垂直,∴AD⊥AB,AD⊥AF,故∠BAF是二面角B—AD—F的平面角.依题意可知,ABFC是正方形,∴∠BAF=45°.即二面角B—AD—F的大小为45°;(2)以O为原点,CB、AF、OE所在直线为坐标轴,建立空间直角坐标系(如图所示),则O(0,0,0),A(0,-3,0),B(3,0,0),D(0,-3,8),E(0,0,8),F(0,3,0),∴=(-3,-3,8),=(0,3,-8).cos〈,〉=
==-.设异面直线BD与EF所成角为,则cos=|cos〈,〉|=.即直线BD与EF所成的角的余弦值为.11.如图,正方体ABCD-A1B1C1D1的棱长为1.
(1)求A1C与DB所成角的大小;
(2)求二面角D-A1B-C的余弦值;
(3)若点E在A1B上,且EB=1,求EC与平面ABCD所成角的大小.答案:(1)如图建立空间直角坐标系C-xyz,则C(0,0,0),D(1,0,0),B(0,1,0),A1(1,1,1).∴DB=(-1,1,0),CA1=(1,1,1).∴cos<DB,CA1>=DB•CA1|DB|•|CA1|=02•3=0.∴A1C与DB所成角的大小为90°.(2)设平面A1BD的法向量n1=(x,y,z),则n1⊥DB,n1⊥A1B,可得-x+y=0x+z=0,∴n1=(1,1,-1).同理可求得平面A1BC的一个法向量n2=(1,0,-1),∴cos<n1,n2>=n1•n2|n1|•|n2|=26=63,∴二面角D-A1B-C的余弦值为63.(3)设n=(0,0,1)是平面ABCD的一个法向量,且CE=(22,1,22),∴cos<n,CE>=n•CE|n|•|CE|=12,∴<n,CE>=60°,∴EC与平面ABCD所成的角是30°.12.已知曲线x=3cosθy=4sinθ(θ为参数,0≤θ≤π)上一点P,原点为0,直线P0的倾斜角为π4,则P点的坐标是______.答案:根据题意,曲线x=3cosθy=4sinθ(θ为参数,0≤θ≤π)消去参数化成普通方程,得x29+y216=1(y≥0)∵直线P0的倾斜角为π4,∴P点在直线y=x上,将其代入椭圆方程得x29+x216=1,解之得x=y=125(舍负),因此点P的坐标为(125,125)故为:(125,125)13.用数学归纳法证明“<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是()
A.2k-1
B.2k-1
C.2k
D.2k+1答案:C14.若E,F,G,H分别为空间四边形ABCD四边AB,BC,CD,DA的中点,证明:四边形EFGH是平行四边形.答案:证明:∵E,F,G,H分别为空间四边形ABCD四边AB,BC,CD,DA的中点,∴EF是△ABC的中位线,∴EF∥AC,且EF=12AC.同理可证,GH∥AC,且GH=12AC,故有
EF∥GH,且EF=GH,∴四边形EFGH是平行四边形.15.若点M,A,B,C对空间任意一点O都满足则这四个点()
A.不共线
B.不共面
C.共线
D.共面答案:D16.某射手射击所得环数X的分布列为:
ξ
4
5
6
7
8
9
10
P
0.02
0.04
0.06
0.09
0.28
0.29
0.22
则此射手“射击一次命中环数大于7”的概率为()
A.0.28
B.0.88
C.0.79
D.0.51答案:C17.(不等式选讲选做题)
已知实数a、b、x、y满足a2+b2=1,x2+y2=3,则ax+by的最大值为______.答案:因为a2+b2=1,x2+y2=3,由柯西不等式(a2+b2)(x2+y2)≥(ax+by)2,得3≥(ax+by)2,不且仅当ay=bx时取等号,所以ax+by的最大值为3.故为:3.18.根据如图的框图,写出打印的第五个数是______.答案:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是:输出N<35时,打印A值.程序在运行过程中各变量的情况如下表示:
是否继续循环
A
N循环前
1
1
第一圈
2×1+1=3
2
是第二圈
2×3+1=7
3
是第三圈
2×7+1=15
4
是第四圈
2×15+1=31
5
是…所以这个打印的第五个数是31.故为:3119.两名女生,4名男生排成一排,则两名女生不相邻的排法共有______
种(以数字作答)答案:由题意,先排男生,再插入女生,可得两名女生不相邻的排法共有A44?A25=480种故为:48020.经过点P(4,-2)的抛物线的标准方程为()
A.y2=-8x
B.x2=-8y
C.y2=x或x2=-8y
D.y2=x或y2=8x答案:C21.设随机变量ξ的概率分布如表所示:
求:(l)P(ξ<1),P(ξ≤1),P(ξ<2),P(ξ≤2);
(2)P(x)=P(ξ≤x),x∈R.答案:(1)根据所给的分布列可知14+13+m+112=1,∴m=13,∴P(ξ<1)=0P(ξ≤1)=P(ξ=1)=14P(ξ<2)=P(ξ≤1)=P(ξ=1)=14P(ξ≤2)=P(ξ=1)+P(ξ=2)=14+13=712(2)根据所给的分布列和第一问做出的结果,得到P(X)=14,(x≤1)P(X)=712,(1<X≤2)P(X)=1112,(2<x≤3)p(X)=1,(X≥3)22.函数f(x)=x2+2的单调递增区间为
______.答案:如图所示:函数的递增区间是:[0,+∞)故为:[0,+∞)23.一个盒子装有10个红、白两色同一型号的乒乓球,已知红色乒乓球有3个,若从盒子里随机取出3个乒乓球,则其中含有红色乒乓球个数的数学期望是______.答案:由题设知含有红色乒乓球个数ξ的可能取值是0,1,2,3,P(ξ=0)=C37C310=724,P(ξ=1)=C27C13C310=2140,P(ξ=2)=C17C23C310=740,P(ξ=3)=C33C310=1120.∴Eξ=0×724+1×
2140+2×740+3×1120=910.故为:910.24.已知集合A={x|log2x<1},B={x|0<x<c,其中c>0},若A=B,则c=______.答案:集合A={x|log2x<1}={x|0<x<2},B={x|0<x<c,其中c>0},若A=B,则c=2,故为2.25.已知集合M={1,2,3},N={1,2,3,4},定义函数f:M→N.若点A(1,f(1))、B(2,f(2))、C(3,f(3)),△ABC的外接圆圆心为D,且
则满足条件的函数f(x)有()
A.6个
B.10个
C.12个
D.16个答案:C26.由棱长为a的正方体的每个面向外侧作侧棱为a的正四棱锥,以这些棱锥的顶点为顶点的凸多面体的全面积是______.答案:由棱长为a的正方体的每个面向外侧作侧棱为a的正四棱锥,共可作6个,得到6个顶点,围成一个正八面体.所作的正四棱锥的高为h′=2a2,正八面体相对的两顶点的距离应为2h′+a=1+2a正八面体的棱长x满足2x=(1+2)a,x=(1+22)a,每个侧面的面积为34x2=34×(1+22)2a2=33+268a2,全面积是8×33+268=33+26故为:(33+26)a227.“因为对数函数y=logax是增函数(大前提),而y=logx是对数函数(小前提),所以y=logx是增函数(结论).”上面推理的错误是()
A.大前提错导致结论错
B.小前提错导致结论错
C.推理形式错导致结论错
D.大前提和小前提都错导致结论错答案:A28.点(2a,a-1)在圆x2+y2-2y-4=0的内部,则a的取值范围是()
A.-1<a<1
B.0<a<1
C.-1<a<
D.-<a<1答案:D29.设、、为实数,,则下列四个结论中正确的是(
)A.B.C.且D.且答案:D解析:若,则,则.若,则对于二次函数,由可得结论.30.点P(1,2,2)到原点的距离是()
A.9
B.3
C.1
D.5答案:B31.给出以下变量①吸烟,②性别,③宗教信仰,④国籍,其中属于分类变量的有______.答案:①因为吸烟不是分类变量,是否吸烟才是分类变量,其他②③④属于分类变量.故为:②③④.32.如图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p、q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”.已知常数p≥0,q≥0,给出下列命题:
①若p=q=0,则“距离坐标”为(0,0)的点有且仅有1个;
②若pq=0,且p+q≠0,则“距离坐标”为(p,q)的点有且仅有2个;
③若pq≠0,则“距离坐标”为(p,q)的点有且仅有4个.
上述命题中,正确命题的个数是()A.0B.1C.2D.3答案:①正确,此点为点O;②不正确,注意到p,q为常数,由p,q中必有一个为零,另一个非零,从而可知有且仅有4个点,这两点在其中一条直线上,且到另一直线的距离为q(或p);③正确,四个交点为与直线l1相距为p的两条平行线和与直线l2相距为q的两条平行线的交点;故选C.33.在平行四边形ABCD中,AC与BD交于点O,E是线段CD的中点,若AC=a,BD=b,则AE=______.(用a、b表示)答案:∵平行四边形ABCD中,AC与BD交于点O,E是线段CD的中点,若AC=a,BD=b,∴AE=AO+OE=12a+OD+OC2=12a+a+b4=3a4+14b.故为:34a+14b.34.已知e1
,
e2是夹角为60°的两个单位向量,且向量a=e1+2e2,则|a|=______.答案:由题意可得e21=1,e22=1,e1?e2=12,所以a2=(e1+2e2)2=1+2+4=7,所以|a|=7,故为:735.已知函数y=f(n),满足f(1)=2,且f(n+1)=3f(n),n∈N+,则
f(3)的值为______.答案:∵f(1)=2,且f(n+1)=3f(n),n∈N+,∴f(2)=3f(1)=6,f(3)=f(2+1)=3f(2)=18,故为18.36.甲盒子中装有3个编号分别为1,2,3的小球,乙盒子中装有5个编号分别为1,2,3,4,5的小球,从甲、乙两个盒子中各随机取一个小球,则取出两小球编号之积为奇数的概率为______.答案:由题意知本题是一个等可能事件的概率,试验发生包含的事件是从两个盒子中分别取一个小球,共有3×5=15种结果,满足条件的事件是取出的两个小球编号之积是奇数,可以列举出有(1,1),(1,3),(1,5),(3,1),(3,3),(3,5)共有6种结果,∴要求的概率是615=25.故为25.37.(本小题满分10分)如图,D、E分别是AB、AC边上的点,且不与顶点重合,已知为方程的两根
(1)证明四点共圆
(2)若求四点所在圆的半径答案:(1)见解析;(2)解析:解:(Ⅰ)如图,连接DE,依题意在中,,由因为所以,∽,四点C、B、D、E共圆。(Ⅱ)当时,方程的根因而,取CE中点G,BD中点F,分别过G,F做AC,AB的垂线,两垂线交于点H,连接DH,因为四点C、B、D、E共圆,所以,H为圆心,半径为DH.,,所以,,点评:此题考查平面几何中的圆与相似三角形及方程等概念和性质。注意把握判定与性质的作用。38.已知集合{2x,x+y}={7,4},则整数x=______,y=______.答案:∵{2x,x+y}={7,4},∴2x=4x+y=7或2x=7x+y=4解得x=2y=5或x=3.5y=0.5不是整数,舍去故为:2,539.若向量a⊥b,且向量a=(2,m),b=(3,1)则m=______.答案:因为向量a=(2,m),b=(3,1),又a⊥b,所以2×3+m=0,所以m=-6.故为-6.40.若向量n与直线l垂直,则称向量n为直线l的法向量.直线x+2y+3=0的一个法向量为()
A.(2,-1)
B.(1,-2)
C.(2,1)
D.(1,2)答案:D41.棱长为2的正方体ABCD-A1B1C1D1中,=(
)
A.
B.4
C.
D.-4答案:D42.要从已编号(1~60)的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是()
A.5、10、15、20、25、30
B.3、13、23、33、43、53
C.1、2、3、4、5、6
D.2、4、8、16、32、48答案:B43.不等式:>0的解集为A.(-2,1)B.(2,+∞)C.(-2,1)∪(2,+∞)D.(-∞,-2)∪(1,+∞)答案:C解析:不等式:>0,∴,原不等式的解集为(-2,1)∪(2,+∞),选C。44.已知点B是点A(2,-3,5)关于平面xOy的对称点,则|AB|=()
A.10
B.
C.
D.38答案:A45.已知变量a,b已被赋值,要交换a、b的值,应采用的算法是()
A.a=b,b=a
B.a=c,b=a,c=b
C.a=c,b=a,c=a
D.c=a,a=b,b=c答案:D46.命题“若a>3,则a>5”的逆命题是______.答案:∵原命题“若a>3,则a>5”的条件是a>3,结论是a>5∴逆命题是“若a>5,则a>3”故为:若a>5,则a>347.关于直线a,b,c以及平面M,N,给出下面命题:
①若a∥M,b∥M,则a∥b
②若a∥M,b⊥M,则b⊥a
③若a∥M,b⊥M,且c⊥a,c⊥b,则c⊥M
④若a⊥M,a∥N,则M⊥N,
其中正确命题的个数为()
A.0个
B.1个
C.2个
D.3个答案:C48.应用反证法推出矛盾的推导过程中要把下列哪些作为条件使用()
①结论相反的判断,即假设
②原命题的条件
③公理、定理、定义等
④原结论
A.①②
B.①②④
C.①②③
D.②③答案:C49.极坐标方程ρcos2θ=0表示的曲线为()
A.极点
B.极轴
C.一条直线
D.两条相交直线答案:D50.已知两定点F1(5,0),F2(-5,0),曲线C上的点P到F1、F2的距离之差的绝对值是8,则曲线C的方程为()A.x29-y216=1B.x216-y29=1C.x225-y236=1D.y225-x236=1答案:据双曲线的定义知:P的轨迹是以F1(5,0),F2(-5,0)为焦点,以实轴长为8的双曲线.所以c=5,a=4,b2=c2-a2=9,所以双曲线的方程为:x216-y29=1故选B第2卷一.综合题(共50题)1.已知定直线l及定点A(A不在l上),n为过点A且垂直于l的直线,设N为l上任意一点,线段AN的垂直平分线交n于B,点B关于AN的对称点为P,求证:点P的轨迹为抛物线.答案:证明:如图所示,建立平面直角坐标系,并且连结PA,PN,NB.由题意知PB垂直平分AN,且点B关于AN的对称点为P,∴AN也垂直平分PB.∴四边形PABN为菱形,∴PA=PN.∵AB⊥l,∴PN⊥l.故点P符合抛物线上点的条件:到定点A的距离和到定直线l的距离相等,∴点P的轨迹为抛物线.2.b=ac(a,b,c∈R)是a、b、c成等比数列的()A.必要非充分条件B.充分非必要条件C.充要条件D.既非充分又非必要条件答案:当b=a=0时,b=ac推不出a,x,b成等比数列成立,故不充分;当a,b,c成等比数列且a<0,b<0,c<0时,得不到b=ac故不必要.故选:D3.一个箱中原来装有大小相同的
5
个球,其中
3
个红球,2
个白球.规定:进行一次操
作是指“从箱中随机取出一个球,如果取出的是红球,则把它放回箱中;如果取出的是白
球,则该球不放回,并另补一个红球放到箱中.”
(1)求进行第二次操作后,箱中红球个数为
4
的概率;
(2)求进行第二次操作后,箱中红球个数的分布列和数学期望.答案:(1)设A1表示事件“第一次操作从箱中取出的是红球”,B1表示事件“第一次操作从箱中取出的是白球”,A2表示事件“第二次操作从箱中取出的是红球”,B2表示事件“第二次操作从箱中取出的是白球”.则A1B2表示事件“第一次操作从箱中取出的是红球,第二次操作从箱中取出的是白球”.由条件概率计算公式得P(A1B2)=P(A1)P(B2|A1)=35×25=625.B1A2表示事件“第一次操作从箱中取出的是白球,第二次操作从箱中取出的是红球”.由条件概率计算公式得P(B1A2)=P(B1)P(A2|B1)=25×45=825.A1B2+B1A2表示“进行第二次操作后,箱中红球个数为
4”,又A1B2与B1A2是互斥事件.∴P(A1B2+B1A2)=P(A1B2)+P(B1A2)=625+825=1425.(2)设进行第二次操作后,箱中红球个数为X,则X=3,4,5.P(X=3)35×35=925,P(X=4)=1425,P(X=5)=25×15=225.进行第二次操作后,箱中红球个数X的分布列为:进行第二次操作后,箱中红球个数X的数学期望EX=3×925+4×1425+5×225=9325.4.设k>1,则关于x,y的方程(1-k)x2+y2=k2-1所表示的曲线是()
A.长轴在x轴上的椭圆
B.长轴在y轴上的椭圆
C.实轴在x轴上的双曲线
D.实轴在y轴上的双曲线答案:D5.在程序语言中,下列符号分别表示什么运算*;\;∧;SQR;ABS?答案:“*”表示乘法运算;“\”表示除法运算;“∧”表示乘方运算;“SQR()”表示求算术平方根运算;“ABS()”表示求绝对值运算.6.在空间直角坐标系中,已知点P(a,0,0),Q(4,1,2),且|PQ|=,则a=()
A.1
B.-1
C.-1或9
D.1或9答案:C7.在直角梯形ABCD中,已知A(-5,-10),B(15,0),C(5,10),AD是腰且垂直两底,求顶点D的坐标.答案:设D(x,y),则∵DC∥AB,∴y-10x-5=0+1015+5,又∵DA⊥AB,∴y+10x+5•0+1015+5=-1.由以上方程组解得:x=-11,y=2.∴D(-11,2).8.若直线ax+by+1=0与圆x2+y2=1相离,则点P(a,b)的位置是()
A.在圆上
B.在圆外
C.在圆内
D.以上都有可能答案:C9.已知,,且与垂直,则实数λ的值为()
A.±
B.1
C.-
D.答案:D10.“△ABC中,若∠C=90°,则∠A、∠B都是锐角”的否命题为()
A.△ABC中,若∠C≠90°,则∠A、∠B都不是锐角
B.△ABC中,若∠C≠90°,则∠A、∠B不都是锐角
C.△ABC中,若∠C≠90°,则∠A、∠B都不一定是锐角
D.以上都不对答案:B11.求原点至3x+4y+1=0的距离?答案:由原点坐标为(0,0),得到原点到已知直线的距离d=|3?0+4?0+1|32+42=15.12.将(x+y+z)5展开合并同类项后共有______项,其中x3yz项的系数是______.答案:将(x+y+z)5展开合并同类项后,每一项都是m?xa?yb?zc
的形式,且a+b+c=5,其中,m是实数,a、b、c∈N,构造8个完全一样的小球模型,分成3组,每组至少一个,共有分法C27种,每一组中都去掉一个小球的数目分别作为(x+y+z)5的展开式中每一项中x,y,z各字母的次数,小球分组模型与各项的次数是一一对应的.故将(x+y+z)5展开合并同类项后共有C27=21项.把(x+y+z)5的展开式看成5个因式(x+y+z)的乘积形式.从中任意选3个因式,这3个因式都取x,另外的2个因式分别取y、z,相乘即得含x3yz项,故含x3yz项的系数为C35=20,故为21;20.13.直线ax+2y+3=0和直线2x+ay-1=0具有相同的方向向量,则a=______.答案:∵直线ax+2y+3=0和直线2x+ay-1=0具有相同的方向向量∴两条直线互相平行,可得a2=2a≠3-1,解之得a=±2故为:±214.给出以下四个对象,其中能构成集合的有()
①教2011届高一的年轻教师;
②你所在班中身高超过1.70米的同学;
③2010年广州亚运会的比赛项目;
④1,3,5.A.1个B.2个C.3个D.4个答案:解析:因为未规定年轻的标准,所以①不能构成集合;由于②③④中的对象具备确定性、互异性,所以②③④能构成集合.故选C.15.在直角坐标系内,坐标轴上的点构成的集合可表示为()A.{(x,y)|x=0,y≠0或x≠0,y=0}B.{(x,y)|x=0且y=0}C.{(x,y)|xy=0}D.{(x,y)|x,y不同时为零}答案:在x轴上的点(x,y),必有y=0;在y轴上的点(x,y),必有x=0,∴xy=0.∴直角坐标系中,x轴上的点的集合{(x,y)|y=0},直角坐标系中,y轴上的点的集合{(x,y)|x=0},∴坐标轴上的点的集合可表示为{(x,y)|y=0}∪{(x,y)|x=0}={(x,y)|xy=0}.故选C.16.(不等式选讲选做题)
已知实数a、b、x、y满足a2+b2=1,x2+y2=3,则ax+by的最大值为______.答案:因为a2+b2=1,x2+y2=3,由柯西不等式(a2+b2)(x2+y2)≥(ax+by)2,得3≥(ax+by)2,不且仅当ay=bx时取等号,所以ax+by的最大值为3.故为:3.17.根据学过的知识,试把“推理与证明”这一章的知识结构图画出来.答案:根据“推理与证明”这一章的知识可得结构图,如图所示.18.A、B为球面上相异两点,则通过A、B两点可作球的大圆有()A.一个B.无穷多个C.零个D.一个或无穷多个答案:如果A,B两点为球面上的两极点(即球直径的两端点)则通过A、B两点可作球的无数个大圆如果A,B两点不是球面上的两极点(即球直径的两端点)则通过A、B两点可作球的一个大圆故选:D19.关于x的方程ax+b=0,当a,b满足条件______
时,方程的解集是有限集;满足条件______
时,方程的解集是无限集;满足条件______
时,方程的解集是空集.答案:关于x的方程ax+b=0,有一个解时,为有限集,所以a,b满足条件是:a≠0,b∈R;满足条件a=0,b=0时,方程有无数组解,方程的解集是无限集;满足条件
a=0,b≠0
时,方程无解,方程的解集是空集.故为:a≠0,b∈R;a=0,b=0;
a=0,b≠0.20.若向量a⊥b,且向量a=(2,m),b=(3,1)则m=______.答案:因为向量a=(2,m),b=(3,1),又a⊥b,所以2×3+m=0,所以m=-6.故为-6.21.无论m,n取何实数值,直线(3m-n)x+(m+2n)y-n=0都过定点P,则P点坐标为
A.(-1,3)
B.
C.
D.答案:D22.下面为一个求20个数的平均数的程序,在横线上应填充的语句为()
A.i>20
B.i<20
C.i>=20
D.i<=20
答案:A23.若向量且与的夹角余弦为则λ等于()
A.4
B.-4
C.
D.答案:C24.给出函数f(x)的一条性质:“存在常数M,使得|f(x)|≤M|x|对于定义域中的一切实数x均成立.”则下列函数中具有这条性质的函数是()A.y=1xB.y=x2C.y=x+1D.y=xsinx答案:根据|sinx|≤1可知|y|=|xsinx|=|x||sinx|≤|x|永远成立故选D.25.设有三个命题:“①0<12<1.②函数f(x)=log
12x是减函数.③当0<a<1时,函数f(x)=logax是减函数”.当它们构成三段论时,其“小前提”是______(填序号).答案:三段话写成三段论是:大前提:当0<a<1时,函数f(x)=logax是减函数,小前提:0<12<1,结论:函数f(x)=log
12x是减函数.其“小前提”是①.故为:①.26.设直线过点(0,a),其斜率为1,且与圆x2+y2=2相切,则a的值为()
A.±
B.±2
C.±2
D.±4答案:B27.如图所示,PD⊥平面ABCD,且四边形ABCD为正方形,AB=2,E是PB的中点,
cos〈,〉=.
(1)建立适当的空间坐标系,写出点E的坐标;
(2)在平面PAD内求一点F,使EF⊥平面PCB.答案:(1)点E的坐标是(1,1,1)(2)F是AD的中点时满足EF⊥平面PCB解析:(1)如图所示,以DA、DC、DP所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0)、B(2,2,0)、C(0,2,0),设P(0,0,2m),则E(1,1,m),∴=(-1,1,m),=(0,0,2m).∴cos〈,〉==.解得m=1,∴点E的坐标是(1,1,1).(2)∵F∈平面PAD,∴可设F(x,0,z).则=(x-1,-1,z-1),又=(2,0,0),=(0,2,-2)∵EF⊥平面PCB∴⊥,且⊥即∴∴,∴F点的坐标为(1,0,0)即点F是AD的中点时满足EF⊥平面PCB.28.已知定义在实数集上的偶函数y=f(x)在区间(0,+∞)上是增函数,那么y1=f(π3),y2=f(3x2+1)和y3=f(log214)之间的大小关系为()A.y1<y3<y2B.y1<y2<y3C.y3<y1<y2D.y3<y2<y1答案:∵偶函数y=f(x)在区间(0,+∞)上是增函数∴|x|越大,函数值就越大∵|3x2+1|≥3,|log214|=2∴|3x2+1|>|log214|>π3∴y1<y3<y2故选A29.定义xn+1yn+1=1011xnyn,n∈N*为向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一个矩阵变换,其中O是坐标原点.已知OP1=(1,0),则OP2010的坐标为______.答案:由题意,xn+1=xnyn+1=xn+yn∴向量的横坐标不变,纵坐标构成以0为首项,1为公差的等差数列∴OP2010的坐标为(1,2009)故为(1,2009)30.随机变量ξ的分布列为
ξ01xP15p310且Eξ=1.1,则p=______;x=______.答案:由15+p+310=1,得p=12.由Eξ=0×15+1×12+310x=1.1,得x=2.故为12;2.31.圆锥的侧面展开图是一个半径长为4的半圆,则此圆锥的底面半径为
______.答案:设圆锥的底面半径为R,则由题意得,2πR=π×4,即R=2,故为:2.32.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘的序号______
答案:(1)游戏盘的中奖概率为
38,(2)游戏盘的中奖概率为
14,(3)游戏盘的中奖概率为
26=13,(4)游戏盘的中奖概率为
13,(1)游戏盘的中奖概率最大.故为:(1).33.将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体是(
)答案:B34.某企业甲、乙、丙三个生产车间的职工人数分别为120人,150人,180人,现用分层抽样的方法抽出一个容量为n的样本,样本中甲车间有4人,那么此样本的容量n=______.答案:每个个体被抽到的概率等于
4120=130,∴样本容量n=(120+150+180)×130=15,故为:15.35.在(1+x)3+(1+x)4…+(1+x)7的展开式中,含x项的系数是______.(用数字作答)答案:(1+x)3+(1+x)4…+(1+x)7的展开式中,含x项的系数是C31+C41+C51+…+C71=25故为:2536.某种产品的广告费支出x与销售额y(单位:万元)之间有如下一组数据:
x24568y3040605070若y与x之间的关系符合回归直线方程y=6.5x+a,则a的值是()A.17.5B.27.5C.17D.14答案:由表格得.x=5,.y=50.
∵y关于x的线性回归方程为y=6.5x+a,∴50=6.5×5+a,∴a=17.5.故选A.37.下列几种说法正确的个数是()
①相等的角在直观图中对应的角仍然相等;
②相等的线段在直观图中对应的线段仍然相等;
③平行的线段在直观图中对应的线段仍然平行;
④线段的中点在直观图中仍然是线段的中点.
A.1
B.2
C.3
D.4答案:B38.函数y=ax2+1的图象与直线y=x相切,则a=______.答案:设切点为(x0,y0),∵y′=2ax,∴k=2ax0=1,①又∵点(x0,y0)在曲线与直线上,即y0=ax20+1y0=x0,②由①②得a=14.故为14.39.如图所示,图中线条构成的所有矩形中(由6个小的正方形组成),其中为正方形的概率为
______.答案:它的长有10种取法,由长与宽的对称性,得到它的宽也有10种取法;因为,长与宽相互独立,所以得到长X宽的个数有:10X10=100个即总的矩形的个数有:100个长=宽的个数为:(1X1的正方形的个数)+(2X2的正方形个数)+(3X3的正方形个数)+(4X4的正方形个数)=16+9+4+1=30个即正方形的个数有:30个所以为正方形的概率是30100=0.3故为0.340.x2+(m-3)x+m=0
一个根大于1,一个根小于1,m的范围是______.答案:设f(x)=x2+(m-3)x+m,则∵x2+(m-3)x+m=0一个根大于1,一个根小于1,∴f(1)<0∴1+(m-3)+m<0∴m<1故为m<1.41.已知顶点在坐标原点,焦点在x轴上的抛物线被直线y=2x+1截得的弦长为15,求此抛物线方程.答案:由题意可设抛物线的方程y2=2px(p≠0),直线与抛物线交与A(x1,y1),B(x2,y2)联立方程y2=2pxy=2x+1可得,4x2+(4-2p)x+1=0则x1+x2=12p-1,x1x2=14,y1-y2=2(x1-x2)AB=(x1-x2)2+(y1-y2)2=5(x1-x2)2=5[(x1+x2)2-4x1x2
]=5(12p-1)2-5=15解得p=6或p=-2∴抛物线的方程为y2=12x或y2=-4x42.若函数y=f(x)是函数y=ax(a>0且a≠1)的反函数,且y=f(x)的图象过点(2,1),则f(x)=______.答案:因为函数y=f(x)是函数y=ax(a>0且a≠1)的反函数,且y=f(x)的图象过点(2,1),所以函数y=ax经过(1,2),所以a=2,所以函数y=f(x)=log2x.故为:log2x.43.如图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p、q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”.已知常数p≥0,q≥0,给出下列命题:
①若p=q=0,则“距离坐标”为(0,0)的点有且仅有1个;
②若pq=0,且p+q≠0,则“距离坐标”为(p,q)的点有且仅有2个;
③若pq≠0,则“距离坐标”为(p,q)的点有且仅有4个.
上述命题中,正确命题的个数是()A.0B.1C.2D.3答案:①正确,此点为点O;②不正确,注意到p,q为常数,由p,q中必有一个为零,另一个非零,从而可知有且仅有4个点,这两点在其中一条直线上,且到另一直线的距离为q(或p);③正确,四个交点为与直线l1相距为p的两条平行线和与直线l2相距为q的两条平行线的交点;故选C.44.为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00-10:00间各自的点击量,得如下所示的统计图,根据统计图:
(1)甲、乙两个网站点击量的极差,中位数分别是多少?
(2)甲网站点击量在[10,40]间的频率是多少?(结果用分数表示)
(3)甲、乙两个网站哪个更受欢迎?并说明理由。答案:解:(1)甲网站的极差为73-8=65,乙网站的极差为71-5=66;甲网站的中位数是56.5,乙网站的中位数是36.5。(2)甲网站点击量在[10,40]间的频率是;(3)甲网站的点击量集中在茎叶图的下方,而乙网站的点击量集中在茎叶图的上方,从数据的分布情况来看,甲网站更受欢迎。45.已知△ABC的三个顶点A(-2,-1)、B(1,3)、C(2,2),则△ABC的重心坐标为______.答案:设△ABC的重心坐标为(x,y),则有三角形的重心坐标公式可得x=-2+1+23=13,y=-1+3+23=43,故△ABC的重心坐标为(13,43),故为(13,43).46.设O是平行四边形ABCD的两条对角线AC与BD的交点,对于下列向量组:①AD与AB;②DA与BC;③CA与DC;④OD与OB.其中能作为一组基底的是______(只填写序号).答案:解析:由于①AD与AB不共线,③CA与DC不共线,所以都可以作为基底.②DA与BC共线,④OD与OB共线,不能作为基底.故为:①③.47.“sinx=siny”是“x=y”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案:∵“sinx=siny”不能推出“x=y”,例如sin30°=sin390°,但30°≠390°,即充分性不成立;反过来,若“x=y”,一定有“sinx=siny”,即必要性成立;∴“sinx=siny”是“x=y”的必要不充分条件.故选C.48.已知两组样本数据x1,x2,…xn的平均数为h,y1,y2,…ym的平均数为k,则把两组数据合并成一组以后,这组样本的平均数为()
A.
B.
C.
D.答案:B49.已知向量a=(1,1)与b=(2,3),用坐标表示2a+b为______.答案:根据题意,a=(1,1)与b=(2,3),则2a+b=2(1,1)+(2,3)=(4,5);故为(4,5).50.把函数y=4x的图象按平移到F′,F′的函数解析式为y=4x-2-2,则向量的坐标等于_____答案:(2,-2)解析:把函数y=4x的图象按平移到F′,F′的函数解析式为y=4x-2-2,则向量的坐标等于_____第3卷一.综合题(共50题)1.(1+2x)7的展开式中第4项的系数是______
(用数字作答)答案:(1+2x)7的展开式的通项为Tr+1=Cr7?(2x)r∴(1+2x)7的展开式中第4项的系数是C37?23=280,故为:280.2.某种产品的广告费支出x与销售额y(单位:万元)之间有如下一组数据:
x24568y3040605070若y与x之间的关系符合回归直线方程y=6.5x+a,则a的值是()A.17.5B.27.5C.17D.14答案:由表格得.x=5,.y=50.
∵y关于x的线性回归方程为y=6.5x+a,∴50=6.5×5+a,∴a=17.5.故选A.3.直线x3+y4=t被两坐标轴截得的线段长度为1,则t的值是
______.答案:令y=0,得:x=3t;令x=0,得:y=4t,所以被两坐标轴截得的线段长度为(3t)2+(4t)2=|5t|=1所以t=±15故为±154.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,ai∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010B.01100C.10111D.00011答案:A选项原信息为101,则h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕1=0,所以传输信息为11010,A选项正确;B选项原信息为110,则h0=a0⊕a1=1⊕1=0,h1=h0⊕a2=0⊕0=0,所以传输信息为01100,B选项正确;C选项原信息为011,则h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,所以传输信息为10110,C选项错误;D选项原信息为001,则h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,所以传输信息为00011,D选项正确;故选C.5.下列命题错误的是(
)A.命题“若,则中至少有一个为零”的否定是:“若,则都不为零”。B.对于命题,使得;则是,均有。C.命题“若,则方程有实根”的逆否命题为:“若方程无实根,则”。D.“”是“”的充分不必要条件。答案:A解析:命题的否定是只否定结论,∴选A.6.已知x1>0,x1≠1,且xn+1=xn(x2n+3)3x2n+1,(n=1,2,…).试证:数列{xn}或者对任意自然数n都满足xn<xn+1,或者对任意自然数n都满足xn>xn+1.答案:证:首先,xn+1-xn=xn(x2n+3)3x2n+1-xn=2xn(1-x2n)3x2n+1,由于x1>0,由数列{xn}的定义可知xn>0,(n=1,2,…)所以,xn+1-xn与1-xn2的符号相同.①假定x1<1,我们用数学归纳法证明1-xn2>0(n∈N)显然,n=1时,1-x12>0设n=k时1-xk2>0,那么当n=k+1时1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2>0,因此,对一切自然数n都有1-xn2>0,从而对一切自然数n都有xn<xn+1②若x1>1,当n=1时,1-x12<0;设n=k时1-xk2<0,那么当n=k+1时1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2<0,因此,对一切自然数n都有1-xn2<0,从而对一切自然数n都有xn>xn+17.已知正数x,y,且x+4y=1,则xy的最大值为()
A.
B.
C.
D.答案:C8.已知集合A={2,x,y},B={2x,y2,2}且x,y≠0,若A=B,则实数x+y的值______.答案:因为集合A={2,x,y},B={2x,y2,2}且x,y≠0,所以x=y2y=2x,解得x=14y=12,所以x+y=34.故为:34.9.设向量a,b的夹角为60°的单位向量,则向量2a+b的模为()A.3B.7C.5D.3答案:|2a+b|=(2a+b)2=4a2+4a?b+b2=4+4×1×1×12+1=7故向量2a+b的模为7故选B10.点P(4,-2)与圆x2+y2=4上任一点连线的中点轨迹方程是______.答案:设圆上任意一点为A(x1,y1),AP中点为(x,y),则x=x1+42y=y1-22,∴x1=2x-4y1=2y+2代入x2+y2=4得(2x-4)2+(2y+2)2=4,化简得(x-2)2+(y+1)2=1.故为:(x-2)2+(y+1)2=111.用反证法证明命题“三角形中最多只有一个内角是钝角”时,则假设的内容是()
A.三角形中有两个内角是钝角
B.三角形中有三个内角是钝角
C.三角形中至少有两个内角是钝角
D.三角形中没有一个内角是钝角答案:C12.巳知椭圆{xn}与{yn}的中心在坐标原点,长轴在x轴上,离心率为32,且G上一点到G的两个焦点的距离之和为12,则椭圆G的方程为______.答案:由题设知e=32,2a=12,∴a=6,b=3,∴所求椭圆方程为x236+y29=1.:x236+y29=1.13.已知直线l:x=2+ty=1-at(t为参数),与椭圆x2+4y2=16交于A、B两点.
(1)若A,B的中点为P(2,1),求|AB|;
(2)若P(2,1)是弦AB的一个三等分点,求直线l的直角坐标方程.答案:(1)直线l:x=2+ty=1-at代入椭圆方程,整理得(4a2+1)t2-4(2a-1)t-8=0设A、B对应的参数分别为t1、t2,则t1+t2=4(2a-1)4a2+1,t1t2=-84a2+1,∵A,B的中点为P(2,1),∴t1+t2=0解之得a=12,∴t1t2=-4,∵|AP|=12+(-12)2|t1|=52|t1|,|BP|=52|t2|,∴|AB|=52(|t1|+|t1|)=52×(t1+t2)2-4t1t2=25,(2)P(2,1)是弦AB的一个三等分点,∴|AP|=12|PB|,∴1+a2|t1|=21+a2|t2|,⇒t1=-2t2,∴t1+t2=-t2=4(2a-1)4a2+1,t1t2=-2t
22=-84a2+1,∴t
22=44a2+1,∴16(2a-1)2(4a2+1)2=44a2+1,解得a=4±76,∴直线l的直角坐标方程y-1=4±76(x-2).14.已知一个四棱锥的三视图如图所示,则该四棱锥的体积是______.答案:因为三视图复原的几何体是正四棱锥,底面边长为2,高为1,所以四棱锥的体积为13×2×2×1=43.故为:43.15.平面向量a与b的夹角为,若a=(2,0),|b|=1,则|a+2b|=()
A.
B.2
C.4
D.12答案:B16.拟定从甲地到乙地通话m分钟的电话费由f(m)=1.06(0.50×[m]+1)给出,其中m>0,[m]是大于或等于m的最小整数(例如[3]=3,[3.7]=4,[3.1]=4),则从甲地到乙地通话时间为5.5分钟的话费为()A.3.71B.3.97C.4.24D.4.77C答案:由[m]是大于或等于m的最小整数可得[5.5]=6.所以f(5.5)=1.06×(0.50×[5.5]+1)=1.06×4=4.24.故选:C.17.已知函数y=f(n),满足f(1)=2,且f(n+1)=3f(n),n∈N+,则
f(3)的值为______.答案:∵f(1)=2,且f(n+1)=3f(n),n∈N+,∴f(2)=3f(1)=6,f(3)=f(2+1)=3f(2)=18,故为18.18.由直角△ABC勾上一点D作弦AB的垂线交弦于E,交股的延长线于F,交外接圆于G,求证:EG为EA和EB的比例中项,又为ED和EF的比例中项.
答案:证明:连接GA、GB,则△AGB也是一个直角三角形,因为EG为直角△AGB的斜边AB上的高,所以,EG为EA和EB的比例中项,即EG2=EA?EB∵∠AFE=∠ABC,∴直角△AEF∽直角△DEB,EAEF=EDEB即EA?EB=ED?EF.又∵EG2=EA?EB,∴EG2=ED?EF(等量代换),故EG也是ED和EF的比例中项.19.如图程序框图箭头a指向①处时,输出
s=______.箭头a指向②处时,输出
s=______.答案:程序在运行过程中各变量的情况如下表所示:(1)当箭头a指向①时,是否继续循环
S
i循环前/0
1第一圈
是
1
2第二圈
是
2
3第三圈
是
3
4第四圈
是
4
5第五圈
是
5
6第六圈
否故最终输出的S值为5,即m=5;(2)当箭头a指向②时,是否继续循环
S
i循环前/0
1第一圈
是
1
2第二圈
是
1+2
3第三圈
是
1+2+3
4第四圈
是
1+2+3+4
5第五圈
是
1+2+3+4+5
6第六圈
否故最终输出的S值为1+2+3+4+5=15;则n=15.故为:5,15.20.选修4-4:坐标系与参数方程
已知直线l:x=m+tcosαy=tsinα(t为参数)经过椭圆C:x=2cosφy=3sinφ(φ为参数)的左焦点F.
(Ⅰ)求m的值;
(Ⅱ)设直线l与椭圆C交于A、B两点,求|FA|•|FB|的最大值和最小值.答案:(Ⅰ)将椭圆C的参数方程化为普通方程,得x24+y23=1.a=2,b=3,c=1,则点F坐标为(-1,0).l是经过点(m,0)的直线,故m=-1.…(4分)(Ⅱ)将l的参数方程代入椭圆C的普通方程,并整理,得(3cos2α+4sin2α)t2-6tcosα-9=0.设点A,B在直线参数方程中对应的参数分别为t1,t2,则|FA|•|FB|=|t1t2|=93cos2α+4sin2α=93+sin2α.当sinα=0时,|FA|•|FB|取最大值3;当sinα=±1时,|FA|•|FB|取最小值94.…(10分)21.下列语句不属于基本算法语句的是()
A.赋值语句
B.运算语句
C.条件语句
D.循环语句答案:B22.命题“若a,b都是奇数,则a+b是偶数”的逆否命题是()A.若a+b不是偶数,则a,b都不是奇数B.若a+b不是偶数,则a,b不都是奇数C.若a+b是偶数,则a,b都是奇数D.若a+b是偶数,则a,b不都是奇数答案:“a,b都是奇数”的否定是“a,b不都是奇数”,“a+b是偶数”的否定是“a+b不是偶数”,故命题“若a,b都是奇数,则a+b是偶数”的逆否命题是“若a+b不是偶数,则a,b不都是奇数”.故选B.23.若|a|=3、|b|=4,且a⊥b,则|a+b|=______.答案:∵|a|=3,|b|=4,且a⊥b,∴|a+b|=a2+2a?b+b2=9+0+16=5.故为:5.24.已知向量a=(0,-1,1),b=(4,1,0),|λa+b|=57且λ>0,则λ=______.答案:∵λa+b=λ(0,-1,1)+(4,1,0)=(4,1-λ,λ),|λa+b|=57,∴42+(1-λ)2+λ2=57,化为λ2-λ-20=0,又λ>0,解得λ=5.故为5.25.设A、B为两个事件,若事件A和B同时发生的概率为310,在事件A发生的条件下,事件B发生的概率为12,则事件A发生的概率为______.答案:根据题意,得∵P(A|B)=P(AB)P(B),P(AB)=310,P(A|B)=12∴12=310P(B),解得P(B)=31012=35故为:3526.设向量a=(1,0),b=(sinθ,cosθ),0≤θ≤π,则|a+b|的最大值为
______.答案:|a|=1因为|b|=1,所以|a+b|2=a2+b2+2a?b=2+2sinθ因为0≤θ≤π,所以0≤sinθ≤1,所以2+2sinθ≤4,|a+b|≤2故为:227.因为样本是总体的一部分,是由某些个体所组成的,尽管对总体具有一定的代表性,但并不等于总体,为什么不把所有个体考查一遍,使样本就是总体?答案:如果样本就是总体,抽样调查就变成普查了,尽管这样确实反映了实际情况,但不是统计的基本思想,其操作性、可行性、人力、物力等方面,都会有制约因素存在,何况有些调查是破坏性的,如考查一批玻璃的抗碎能力,灯泡的使用寿命等,普查就全破坏了.28.在空间直角坐标系中,点(-2,1,4)关于x轴的对称点的坐标为()
A.(-2,1,-4)
B.(-2,-1,-4)
C.(2,1,-4)
D.(2,-1,4)答案:B29.电视机的使用寿命显像管开关的次数有关.某品牌电视机的显像管开关了10000次还能继续使用的概率是0.96,开关了15000次后还能继续使用的概率是0.80,则已经开关了10000次的电视机显像管还能继续使用到15000次的概率是______.答案:记“开关了10000次还能继续使用”为事件A,记“开关了15000次后还能继续使用”为事件B,根据题意,易得P(A)=0.96,P(B)=0.80,则P(A∩B)=0.80,由条件概率的计算方法,可得P=P(A∩B)P(A)=0.800.96=56;故为56.30.双曲线的中心在坐标原点,离心率等于2,一个焦点的坐标为(2,0),则此双曲线的渐近线方程是______.答案:∵离心率等于2,一个焦点的坐标为(2,0),∴ca=2,
c=2且焦点在x轴上,∴a=1∵c2=a2+b2∴b2=3∴b=3.所以双曲线的渐进方程为y=±3x.故为y=±3x31.柱坐标(2,,5)对应的点的直角坐标是
。答案:()解析:∵柱坐标(2,,5),且,2,∴对应直角坐标是()32.如图所示,设k1,k2,k3分别是直线l1,l2,l3的斜率,则()
A.k1<k2<k3
B.k3<k1<k2
C.k3<k2<k1
D.k1<k3<k2
答案:C33.画出《数学3》第一章“算法初步”的知识结构图.答案:《数学3》第一章“算法初步”的知识包括:算法、程序框图、算法的三种基本逻辑结构和框图表示、基本算法语句.算法的三种基本逻辑结构和框图表示就是顺序结构、条件结构、循环结构,基本算法语句是指输入语句、输出语句、赋值语句、条件语句和循环语句.故《数学3》第一章“算法初步”的知识结构图示意图如下:34.如图所示,已知PA切圆O于A,割线PBC交圆O于B、C,PD⊥AB于D,PD与AO的延长线相交于点E,连接CE并延长交圆O于点F,连接AF.
(1)求证:B,C,E,D四点共圆;
(2)当AB=12,tan∠EAF=23时,求圆O的半径.答案:(1)由切割线定理PA2=PB?PC由已知易得Rt△PAD∽Rt△PEA,∴PA2=PD?PE,∴PA2=PB?PC=PA2=PD?PE,又∠BPD为公共角,∴△PBD∽△PEC,∴∠BDP=∠C∴B,C,E,D四点共圆
(2)作OG⊥AB于G,由(1)知∠PBD=∠PEC,∵∠PBD=∠F,∴∠F=∠PEC,∴PE∥AF.∵AB=12,∴AG=6.∵PD⊥AB,∴PD∥OG.∴PE∥OG∥AF,∴∠AOG=∠EAF.在Rt△AOG中,tan∠AOG=tan∠EAF=23=6OG,∴OG=9∴R=AO=AG2+OG2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智能家居系统的开发与实施-全面剖析
- 汽车售后服务市场细分-全面剖析
- 2024年浙江和田地区教师招聘笔试真题
- 花生壳协议标准化国际竞争力-全面剖析
- 2024年平凉市市直单位公益性岗位工作人员招聘笔试真题
- 2024年湖北孝感高新区招聘教师笔试真题
- 矿业智能监测系统-全面剖析
- 查询结果可视化-全面剖析
- 浙江省台金七校联盟2023-2024学年高二下学期期中联考历史试题(解析版)
- 安徽省江南十校2025年高三下学期联考生物试题(解析版)
- 2024年天津市中考历史试卷真题(含答案逐题解析)
- 环境检测实验室分析人员绩效考核方案
- DB23T 1727-2016 地理标志产品 克东天然苏打水
- 2017年注册会计师《审计》考试真题及参考答案(考生回忆版)
- 新疆大地构造基本特征(屈讯)
- 小学二年级数学作业设计案例余数与除数的关系作业设计
- 中学学校学生校服采购方案
- 电解车间应急预案
- HG/T 4339-2024 机械设备用涂料(正式版)
- 【快递分拣机器人传动结构及零件设计8900字(论文)】
- 《人类行为与社会环境》形考任务2-国开(GD)-参考资料
评论
0/150
提交评论