2022-2023学年浙江省绍兴市诸暨市中考数学适应性模拟试题含解析_第1页
2022-2023学年浙江省绍兴市诸暨市中考数学适应性模拟试题含解析_第2页
2022-2023学年浙江省绍兴市诸暨市中考数学适应性模拟试题含解析_第3页
2022-2023学年浙江省绍兴市诸暨市中考数学适应性模拟试题含解析_第4页
2022-2023学年浙江省绍兴市诸暨市中考数学适应性模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(共10小题,每小题3分,共30分)1.某射手在同一条件下进行射击,结果如下表所示:射击次数(n)102050100200500……击中靶心次数(m)8194492178451……击中靶心频率(mn0.800.950.880.920.890.90……由此表推断这个射手射击1次,击中靶心的概率是()A.0.6 B.0.7 C.0.8 D.0.92.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A.4.5m B.4.8m C.5.5m D.6m3.方程的解是().A. B. C. D.4.某市从今年1月1日起调整居民用水价格,每立方米水费上涨.小丽家去年12月份的水费是15元,而今年5月的水费则是10元.已知小丽家今年5月的用水量比去年12月的用水量多5m1.求该市今年居民用水的价格.设去年居民用水价格为x元/m1,根据题意列方程,正确的是()A. B.C. D.5.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm6.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①② B.①④ C.②③ D.③④7.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是()A.100° B.80° C.60° D.50°8.已知,两数在数轴上对应的点如图所示,下列结论正确的是()A. B. C. D.9.甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程(米)与甲出发的时间(分钟)之间的关系如图所示,下列说法错误的是()A.甲的速度是70米/分 B.乙的速度是60米/分C.甲距离景点2100米 D.乙距离景点420米10.若二次函数y=ax2+bx+c的x与y的部分对应值如下表:x﹣2﹣1012y830﹣10则抛物线的顶点坐标是()A.(﹣1,3) B.(0,0) C.(1,﹣1) D.(2,0)二、填空题(本大题共6个小题,每小题3分,共18分)11.哈尔滨市某楼盘以每平方米10000元的均价对外销售,经过连续两次上调后,均价为每平方米12100元,则平均每次上调的百分率为_____.12.的算术平方根是_____.13.分式与的最简公分母是_____.14.以下两题任选一题作答:(1).下图是某商场一楼二楼之间的手扶电梯示意图,其中AB、CD分别表示一楼、二楼地面的水平,∠ABC=150°,BC的长是8m,则乘电梯次点B到点C上升的高度h是_____m.(2).一个多边形的每一个内角都是与它相邻外角的3倍,则多边形是_____边形.15.下面是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:第n个“上”字需用_____枚棋子.16.已知三个数据3,x+3,3﹣x的方差为,则x=_____.三、解答题(共8题,共72分)17.(8分)嘉兴市2010~2014年社会消费品零售总额及增速统计图如下:请根据图中信息,解答下列问题:(1)求嘉兴市2010~2014年社会消费品零售总额增速这组数据的中位数.(2)求嘉兴市近三年(2012~2014年)的社会消费品零售总额这组数据的平均数.(3)用适当的方法预测嘉兴市2015年社会消费品零售总额(只要求列出算式,不必计算出结果).18.(8分)如图,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等边三角形,点D在边AB上.(1)如图1,当点E在边BC上时,求证DE=EB;(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;(1)如图1,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=1.求CG的长.19.(8分)如图,在菱形ABCD中,E、F分别为AD和CD上的点,且AE=CF,连接AF、CE交于点G,求证:点G在BD上.20.(8分)已知:如图,在△ABC中,AB=BC,∠ABC=90°,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H,连接HA、HC.(1)求证:四边形FBGH是菱形;(2)求证:四边形ABCH是正方形.21.(8分)三辆汽车经过某收费站下高速时,在2个收费通道A,B中,可随机选择其中的一个通过.(1)三辆汽车经过此收费站时,都选择A通道通过的概率是;(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B通道通过的概率.22.(10分)(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立.说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=1.点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当DC的长与△ABD底边上的高相等时,求t的值.23.(12分)在眉山市樱花节期间,岷江二桥一端的空地上有一块矩形的标语牌ABCD(如图).已知标语牌的高AB=5m,在地面的点E处,测得标语牌点A的仰角为30°,在地面的点F处,测得标语牌点A的仰角为75°,且点E,F,B,C在同一直线上,求点E与点F之间的距离.(计算结果精确到0.1m,参考数据:≈1.41,≈1.73)24.“春节”是我国的传统佳节,民间历来有吃“汤圆”的习俗.某食品厂为了解市民对去年销量较好的肉馅(A)、豆沙馅(B)、菜馅(C)、三丁馅(D)四种不同口味汤圆的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民人数是人;(2)将图①②补充完整;(直接补填在图中)(3)求图②中表示“A”的圆心角的度数;(4)若居民区有8000人,请估计爱吃D汤圆的人数.

参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】

观察表格的数据可以得到击中靶心的频率,然后用频率估计概率即可求解.【详解】依题意得击中靶心频率为0.90,估计这名射手射击一次,击中靶心的概率约为0.90.故选:D.【点睛】此题主要考查了利用频率估计概率,首先通过实验得到事件的频率,然后用频率估计概率即可解决问题.2、D【解析】

根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.【详解】解:由题意可得:AE=2m,CE=0.5m,DC=1.5m,∵△ABC∽△EDC,∴DCAB即1.5AB解得:AB=6,故选:D.【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.3、B【解析】

直接解分式方程,注意要验根.【详解】解:=0,方程两边同时乘以最简公分母x(x+1),得:3(x+1)-7x=0,解这个一元一次方程,得:x=,经检验,x=是原方程的解.故选B.【点睛】本题考查了解分式方程,解分式方程不要忘记验根.4、A【解析】解:设去年居民用水价格为x元/cm1,根据题意列方程:,故选A.5、B【解析】【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.【详解】∵原正方形的周长为acm,∴原正方形的边长为cm,∵将它按图的方式向外等距扩1cm,∴新正方形的边长为(+2)cm,则新正方形的周长为4(+2)=a+8(cm),因此需要增加的长度为a+8﹣a=8cm,故选B.【点睛】本题考查列代数式,解题的关键是根据题意表示出新正方形的边长及规范书写代数式.6、B【解析】分析:本题是考察数轴上的点的大小的关系.解析:由图知,b<0<a,故①正确,因为b点到原点的距离远,所以|b|>|a|,故②错误,因为b<0<a,所以ab<0,故③错误,由①知a-b>a+b,所以④正确.故选B.7、B【解析】试题分析:如图,翻折△ACD,点A落在A′处,可知∠A=∠A′=100°,然后由圆内接四边形可知∠A′+∠B=180°,解得∠B=80°.故选:B8、C【解析】

根据各点在数轴上位置即可得出结论.【详解】由图可知,b<a<0,A.

∵b<a<0,∴a+b<0,故本选项错误;B.

∵b<a<0,∴ab>0,故本选项错误;C.

∵b<a<0,∴a>b,故本选项正确;D.

∵b<a<0,∴b−a<0,故本选项错误.故选C.9、D【解析】

根据图中信息以及路程、速度、时间之间的关系一一判断即可.【详解】甲的速度==70米/分,故A正确,不符合题意;设乙的速度为x米/分.则有,660+24x-70×24=420,解得x=60,故B正确,本选项不符合题意,70×30=2100,故选项C正确,不符合题意,24×60=1440米,乙距离景点1440米,故D错误,故选D.【点睛】本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.10、C【解析】分析:由表中所给数据,可求得二次函数解析式,则可求得其顶点坐标.详解:当或时,,当时,,,解得,二次函数解析式为,抛物线的顶点坐标为,故选C.点睛:本题主要考查二次函数的性质,利用条件求得二次函数的解析式是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、10%【解析】

设平均每次上调的百分率是x,因为经过两次上调,且知道调前的价格和调后的价格,从而列方程求出解.【详解】设平均每次上调的百分率是x,依题意得,解得:,(不合题意,舍去).答:平均每次上调的百分率为10%.故答案是:10%.【点睛】此题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.12、【解析】∵=8,()2=8,∴的算术平方根是.故答案为:.13、3a2b【解析】

利用取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母求解即可.【详解】分式与的最简公分母是3a2b.故答案为3a2b.【点睛】本题考查最简公分母,解题的关键是掌握求最简公分母的方法.14、48【解析】

(1)先求出斜边的坡角为30°,再利用含30°的直角三角形即可求解;(2)设这个多边形边上为n,则内角和为(n-2)×180°,外角度数为故可列出方程求解.【详解】(1)∵∠ABC=150°,∴斜面BC的坡角为30°,∴h==4m(2)设这个多边形边上为n,则内角和为(n-2)×180°,外角度数为依题意得解得n=8故为八边形.【点睛】此题主要考查含30°的直角三角形与多边形的内角和计算,解题的关键是熟知含30°的直角三角形的性质与多边形的内角和公式.15、4n+2【解析】∵第1个有:6=4×1+2;第2个有:10=4×2+2;第3个有:14=4×3+2;……∴第1个有:4n+2;故答案为4n+216、±1【解析】

先由平均数的计算公式求出这组数据的平均数,再代入方差公式进行计算,即可求出x的值.【详解】解:这三个数的平均数是:(3+x+3+3-x)÷3=3,则方差是:[(3-3)2+(x+3-3)2+(3-x-3)2]=,解得:x=±1;故答案为:±1.【点睛】本题考查方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.三、解答题(共8题,共72分)17、(115)这组数据的中位数为15.116%;(116)这组数据的平均数是11511609.116亿元;(15)116016年社会消费品零售总额为11515167×(115+15.116%)亿元.【解析】试题分析:(115)根据中位数的定义把这组数据从小到大排列,找出最中间的数即可得出答案;(116)根据平均数的定义,求解即可;(15)根据增长率的中位数,可得116016年的销售额.试题解析:解:(115)数据从小到大排列115.16%,116.5%,15.116%,16.115%,5.7%,则嘉兴市1160115~116015年社会消费品零售总额增速这组数据的中位数是15.116%;(116)嘉兴市近三年(1160116~116015年)的社会消费品零售总额这组数据的平均数是:(6.16+7.6+515.7+9.9+1150.0)÷5=11575.116(亿元);(15)从增速中位数分析,嘉兴市116016年社会消费品零售总额为1150×(115+15.116%)=16158.116716(亿元).考点:115.折线统计图;116.条形统计图;15.算术平均数;16.中位数..18、(1)证明见解析;(2)ED=EB,证明见解析;(1)CG=2.【解析】

(1)、根据等边三角形的性质得出∠CED=60°,从而得出∠EDB=10°,从而得出DE=BE;(2)、取AB的中点O,连接CO、EO,根据△ACO和△CDE为等边三角形,从而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,从而得出答案;(1)、取AB的中点O,连接CO、EO、EB,根据题意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,设CG=a,则AG=5a,OD=a,根据题意列出一元一次方程求出a的值得出答案.【详解】(1)∵△CDE是等边三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=10°,∴∠EDB=∠B,∴DE=EB;(2)ED=EB,理由如下:取AB的中点O,连接CO、EO,∵∠ACB=90°,∠ABC=10°,∴∠A=60°,OC=OA,∴△ACO为等边三角形,∴CA=CO,∵△CDE是等边三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(1)、取AB的中点O,连接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=1,∵GE∥AB,∴∠G=180°﹣∠A=120°,∴△CEG≌△DCO,∴CG=OD,设CG=a,则AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+1+1,解得,a=2,即CG=2.19、见解析【解析】

先连接AC,根据菱形性质证明△EAC≌△FCA,然后结合中垂线的性质即可证明点G在BD上.【详解】证明:如图,连接AC.∵四边形ABCD是菱形,∴DA=DC,BD与AC互相垂直平分,∴∠EAC=∠FCA.∵AE=CF,AC=CA,∴△EAC≌△FCA,∴∠ECA=∠FAC,∴GA=GC,∴点G在AC的中垂线上,∴点G在BD上.【点睛】此题重点考察学生对菱形性质的理解,掌握菱形性质和三角形全等证明方法是解题的关键.20、(1)见解析(2)见解析【解析】

(1)由三角形中位线知识可得DF∥BG,GH∥BF,根据菱形的判定的判定可得四边形FBGH是菱形;

(2)连结BH,交AC于点O,利用平行四边形的对角线互相平分可得OB=OH,OF=OG,又AF=CG,所以OA=OC.再根据对角线互相垂直平分的平行四边形得证四边形ABCH是菱形,再根据一组邻边相等的菱形即可求解.【详解】(1)∵点F、G是边AC的三等分点,

∴AF=FG=GC.

又∵点D是边AB的中点,

∴DH∥BG.

同理:EH∥BF.

∴四边形FBGH是平行四边形,

连结BH,交AC于点O,

∴OF=OG,

∴AO=CO,

∵AB=BC,

∴BH⊥FG,

∴四边形FBGH是菱形;

(2)∵四边形FBGH是平行四边形,

∴BO=HO,FO=GO.

又∵AF=FG=GC,

∴AF+FO=GC+GO,即:AO=CO.

∴四边形ABCH是平行四边形.

∵AC⊥BH,AB=BC,

∴四边形ABCH是正方形.【点睛】本题考查正方形的判定,菱形的判定和性质,三角形的中位线,熟练掌握正方形的判定和性质是解题的关键.21、(1);(2)【解析】

(1)用树状图分3次实验列举出所有情况,再看3辆车都选择A通道通过的情况数占总情况数的多少即可;

(2)由(1)可知所有可能的结果数目,再看至少有两辆汽车选择B通道通过的情况数占总情况数的多少即可.【详解】解:(1)画树状图得:共8种情况,甲、乙、丙三辆车都选择A通道通过的情况数有1种,所以都选择A通道通过的概率为,故答案为:;(2)∵共有8种等可能的情况,其中至少有两辆汽车选择B通道通过的有4种情况,∴至少有两辆汽车选择B通道通过的概率为.【点睛】考查了概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.22、(2)证明见解析;(2)结论成立,理由见解析;(3)2秒或2秒.【解析】

(2)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(2)由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(3)过点D作DE⊥AB于点E,根据等腰三角形的性质可得AE=BE=3,根据勾股定理可得DE=4,由题可得DC=DE=4,则有BC=2-4=2.易证∠DPC=∠A=∠B.根据ADBC=APBP,就可求出t的值.【详解】解:(2)如图2,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠APD=∠BPC,∴△ADP∽△BPC,∴,∴ADBC=APBP;(2)结论ADBC=APBP仍成立;证明:如图2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠APD,∴∠DPC+∠BPC=∠A+∠APD,∵∠DPC=∠A=θ,∴∠BPC=∠APD,又∵∠A=∠B=θ,∴△ADP∽△BPC,∴,∴ADBC=APBP;(3)如下图,过点D作DE⊥AB于点E,∵AD=BD=2,AB=6,∴AE=BE=3∴DE==4,∵以D为圆心,以DC为半径的圆与AB相切,∴DC=DE=4,∴BC=2-4=2,∵AD=BD,∴∠A=∠B,又∵∠DPC=∠A,∴∠DPC=∠A=∠B,由(2)(2)的经验得AD•BC=AP•BP,又∵AP=t,BP=6-t,∴t(6-t)=2×2,∴t=2或t=2,∴t的值为2秒或2秒.【点睛】本题考查圆的综合题.23、7.3米【解析】

:如图作

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论