版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
传感与检测技术第一章绪论本章学习目的要求:
1.了解检测技术的概念2.掌握测量及误差的概念3.掌握基本测量电路4.了解传感器的概念和作用
5.了解传感器的分类
6.了解传感器的最新发展动态
一、检测技术的概念与作用 检测技术是人们为了对被测对象所包含的信息进行定性的了解和定量的掌握所采取的一系列技术措施。 检测技术:检测过程:测量+信号检出(极为重要)信息提取、信号转换存储与传输、显示记录、分析处理检测技术:检测方法、检测结构、检测信号处理---综合性技术1、产品检验和质量控制的重要手段检测技术的作用与意义被动检测主动检测(在线检测)质量控制领域2、在大型设备安全经济运行监测中得到广泛应用故障监测系统动态监测保证设备和人员安全提高经济效益3、自动化系统中不可缺少的组成部分生产过程:“物流”“信息流”控制管理数量状态趋向检测获取信息分析判断自动控制自动化:信息获取、信息转换、信息处理、信息传送、信息执行4、检测技术的完善和发展推动着现代科学技术的进步检测手段水平决定科学研究的深度和广度理论研究成果离不开必要的检测手段
二、检测系统的基本组成一个完整的检测系统或检测装置通常是由传感器、测量电路和显示记录装置等几部分组成,分别完成信息获取、转换、显示和处理等功能。当然其中还包括电源和传输通道等不可缺少的部分。检测系统的组成框图如下:模拟信号检测系统的组成数字信号检测系统的组成数字信号检测系统有绝对码数字式和增量码数字式。当传感器输出的编码与被测量一一对应,称为绝对码。当传感器输出增量码信号,即信号变化的周期数与被测量成正比,其增量码数字信号检测系统的典型组成如右图所示。图1绝对码检查系统图2增量码检查系统1.传感器传感器是把被测量转换成电学量的装置,显然,传感器是检测系统与被测对象直接发生联系的部件,是检测系统最重要的环节,检测系统获取信息的质量往往是由传感器的性能确定的。
2.测量电路测量电路的作用是将传感器的输出信号转换成易于测量的电压或电流信号。3.显示记录装置显示记录装置是检测人员和检测系统联系的主要环节,主要作用是使人们了解被测量的大小或变化的过程。常用的有模拟显示、数字显示和图像显示三种。
三、检测技术的发展趋势检测技术的发展趋势主要有以下两个方面:第一,新原理、新材料和新工艺将产生更多品质优良的新型传感器。第二,检测系统或检测装置目前正迅速地由模拟式、数字式向智能化方向发展。
四、测量误差的概念及其处理方法测量及测量误差
1.测量定义测量是指人们用实验的方法,借助于一定的仪器或设备,将被测量与同性质的单位标准量进行比较,并确定被测量对标准量的倍数,从而获得关于被测量的定量信息。
2.测量方法测量方法是实现测量过程所采用的具体方法。按照测量手段可以将测量方法分为:直接测量和间接测量;按照获得测量值的方式可以分为:偏差式测量、零位式测量和微差式测量;此外,根据传感器是否与被测对象直接接触,可区分为:接触式测量和非接触式测量;而根据被测对象的变化特点又可分为:静态测量和动态测量等。
五、
测量误差检测结果和被测量的客观真值之间存在一定的差别。这个差值称为测量误差。测量误差的主要来源可以概括为工具误差、环境误差、方法误差和人员误差等。
(1)绝对误差与相对误差
Ⅰ.绝对误差绝对误差是仪表的指示值x与被测量的真值x0之间的差值,记做δ
绝对误差有符号和单位,它的单位与被测量相同。引入绝对误差后,被测量真值可以表示为含有误差的指示值加上修正值之后,可以消除误差的影响,在计量工作中,通常采用加修正值的方法来保证测量值的准确可靠,仪表送上级计量部门检定,其主要目的就是获得一个准确的修正值。
Ⅱ.相对误差相对误差是仪表指示值的绝对误差δ与被测量真值x0的比值,常用百分数表示,即
相对误差比绝对误差能更好地说明测量的精确程度。在上面的例子中显然,后一种长度测量仪表更精确。
引用误差是绝对误差与仪表量程上的比值,通常以百分数表示。引用误差
如果以测量仪表整个量程中,可能出现的绝对误差最大值δm代替δ,则可得到最大引用误差r0m。对一台确定的仪表或一个检测系统,最大引用误差就是一个定值。
(2)系统误差与随机误差
Ⅰ.系统误差在相同的条件下,多次重复测量同一量时,误差的大小和符号保持不变,或按照一定的规律变化,这种误差称为系统误差。
Ⅱ.随机误差在相同条件下,多次测量同一量时,其误差的大小和符号以不可预见的方式变化,这种误差称为随机误差。
(3)粗大误差明显歪曲测量结果的误差称作粗大误差,又称过失误差,粗大误差主要是人为因素造成的。含有粗大误差的测量值称为坏值或异常值。坏值应从测量结果中剔除。
六、随机误差的处理方法
1.概率、概率密度与正态分布自然界中,某一事件或现象出现的客观可能性大小,通常用概率来表示。客观的必然现象称为必然事件。例如,平面三角形内角和为180°,就是一个必然事件。必然事件的概率为1。违反客观实际的不可能出现的现象称为不可能事件,不可能事件的概率为零。
2.随机误差的特点(1)对称(2)有界性(3)抵偿性(4)单峰性3.算术平均值和标准偏差可以用解析的方法推导出随机误差正态分布曲线的数学表达式,即正态概率密度分布函数。
上式称为高斯误差方程。式中σ是方均根误差,或称标准误差。标准误差σ可由下式求得标准误差的估计值可由下式计算(贝塞尔公式
)
在一般情况下,我们对和并不加以严格区分,统称为标准误差。标准误差在评价正态分布的随机误差时具有特殊的意义。
理论计算表明:介于(-δ,+δ)之间的随机误差出现的概率为介于(-2δ,+2δ)之间的随机误差出现的概率为随机误差出现在此区间之外的概率为1-0.9545=0.0455=4.55%。介于(-3δ,+3δ)之间的随机误差出现的概率为出现在此区间之外的概率为l-0.9973=0.0027<0.3%。
4.测量结果的表示根据以上介绍,习惯上常用
其中k为置信系数,取k=1,2,3......或者其中:(n=5~6)例如,测量电压时的测量列为:12.123;12.234;12.235;12.133;12.142;12.233;12.222;12.236;12.152;12.255;12.253;12.246。则其算术平均值是:它的实验标准差是(由于标准差没法直接计算,实际操作中都用实验标准差来代替σ,即用算术平均值代替真值):
最后得实验标准差为:
若K取2,则测量列的随机误差为土2s(xk)=土0.1016(V)。
系统误差的消除方法
系统误差虽然是有规律的,但实际处理起来往往比无规则的随机误差困难得多。对系统误差的处理是否得当,很大程度上取决于测量者的知识水平、工作经验和实验技巧。1.交换法在测量中,将引起系统误差的某些条件(如被测量的位置等)相互交换,而保持其它条件不变,使产生系统误差的因素对测量结果起相反的作用,从而抵消系统误差。2.抵消法改变测量中的某些条件(如测量方向),使前后两次测量结果的误差符号相反,取其平均值以消除系统误差。
3.代替法这种方法是在测量条件不变的情况下,用已知量替换被测量,达到消除系统误差的目的。4.对称测量法这种方法用于消除线性变化的系统误差。下面我们通过利用电位差计和标准电阻RN,精确测量未知电阻Rx的例子来说明对称测量法的原理和测量过程,如下图。如果回路电流I恒定不变,只要测出RN和Rx上的电压UN和Ux,即可得到Rx值Rx=(Ux/UN)RN。但由于UN和Ux的值不是在同一时刻测得的;由于电流I在测量过程中的缓慢下降而引入了线性系统误差。在这里我们把电流的变化看做是均匀地减小,与时间t
成线性关系。在t
1、t
2和t
3三个等间隔的时刻,按照Ux、UN、Ux的顺序测量。时间间隔为t
2-t
1=t
3-t
2=Δt,相应的电流变化量为ε。
解此方程组可得:
这样按照等距测量法得到的Rx值,已不受测量过程中电流变化的影响,消除了因此而产生的线性系统误差。
5.补偿法在测量过程中,由于某个条件的变化或仪器某个环节的非线性特性都可能引入变值系统误差。此时,可在测量系统中采取补偿措施,自动消除系统误差。例如,热电偶测温时,冷端温度的变化会引起变值系统误差。在测量系统中采用补偿电桥,就可以起到自动补偿作用。二、传感器的地位和作用传感器是人类五官的延长,又称之为电五官。传感器是获取信息的主要途径与手段。没有传感器,现代化生产就失去了基础。传感器是边缘学科开发的先驱。2.1传感器与人体感官的比较1、零维探测和多维感知2、单功能和多功能3、微分和积分4、非智能型和智能型宴会效应:选择功能咖啡桌效应:学习功能高桥效应:联想功能模糊效应:模式量识别森林效应:全局和局部2.2传感器基础知识传感器概念:传感器就是能感知外界信息并能按一定规律将这些信息转换成可用信号的机械电子装置。如下图所示:物理量电量①传感器是测量装置,能完成检测任务;②输入量是某一被测量,可能是物理量,也可能是化学量、生物量等;③输出量是某种物理量,便于传输、转换、处理、显示等,可以是气、光、电物理量,主要是电物理量;④输出输入有对应关系,且应有一定的精确程度。传感器名称:发送器、传送器、变送器、检测器、探头传感器功用:一感二传,即感受被测信息,并传送出去。V、I、F、P传感器的组成辅助电源敏感元件转换元件基本转换电路被测量电量dV2.3传感器的分类1)按被测物理量分类常见的被测物理量机械量:长度,厚度,位移,速度,加速度,
旋转角,转数,质量,重量,力,
压力,真空度,力矩,风速,流速,
流量;声:声压,噪声.磁:磁通,磁场.温度:温度,热量,比热.光:亮度,色彩机械式,电气式,光学式,流体式等。2)按工作原理分类:切削力测量应变片动圈式磁电传感器
能量转换型和能量控制型.3)按信号变换特征:能量转换型:直接由被测对象输入能量使其工作.
例如:热电偶温度计,压电式加速度计.能量控制型:从外部供给能量并由被测量控制外部供给能量的变化.例如:电阻应变片.4)按敏感元件与被测对象之间的能量关系:物性型:依靠敏感元件材料本身物理性质的变化来实现信号变换.如:水银温度计.结构型:依靠传感器结构参数的变化实现信号转变.
例如:电容式和电感式传感器.5.传感器的命名由主题词加四级修饰语构成。
主题词——传感器;第一级修饰语——被测量,包括修饰被测量的定语;第二级修饰语——转换原理,一般可后续以“式”字;第三级修饰语——特征描述,指必须强调的传感器结构、性能、材料特征、敏感元件及其它必要的性能特征,一般可后续以“型”字;第四级修饰语——主要技术指标(量程、精确度、灵敏度等)。例:100mm应变计式位移传感器6.传感器的代号依次为主称(传感器)被测量—转换原理—序号主称——传感器,代号C;被测量——用一个或两个汉语拼音的第一个大写字母标记。见附录表2;转换原理——用一个或两个汉语拼音的第一个大写字母标记。见附录表3;序号——用一个阿拉伯数字标记,厂家自定,用来表征产品设计特性、性能参数、产品系列等。例:应变式位移传感器:CWY-YB-20;光纤压力传感器:CY-GQ-2。2.4传感器的发展趋势
传感技术的发展分为两个方面:●提高与改善传感器的技术性能;●寻找新原理、新材料、新工艺及新功能等。
一、改善传感器的性能的技术途径1.差动技术
差动技术是传感器中普遍采用的技术。
2.平均技术
在传感器中普遍采用平均技术可产生平均效应,其原理是利用若干个传感单元同时感受被测量,其输出则是这些单元输出的平均值,若将每个单元可能带来的误差均可看作随机误差且服从正态分布,根据误差理论,总的误差将减小为δΣ=±δ/√n式中n—传感单元数。可见,在传感器中利用平均技术不仅可使传感器误差减小,且可增大信号量,即增大传感器灵敏度。3.补偿与修正技术
补偿与修正技术的运用大致针对两种情况:★针对传感器本身特性★针对传感器的工作条件或外界环境
补偿与修正,可以利用电子线路(硬件)来解决,也可以采用微型计算机通过软件来实现。4.屏蔽、隔离与干扰抑制
减小传感器对影响因素的灵敏度降低外界因素对传感器实际作用的程度对于电磁干扰,可以采用屏蔽、隔离措施,也可用滤波等方法抑制。对于如温度、湿度、机械振动、气压、声压、辐射、甚至气流等,可采用相应的隔离措施,如隔热、密封、隔振等,或者在变换成为电量后对干扰信号进行分离或抑制,减小其影响。
5.稳定性处理
提高传感器性能的稳定性措施:对材料、元器件或传感器整体进行必要的稳定性处理。如永磁材料的时间老化、温度老化、机械老化及交流稳磁处理、电气元件的老化筛选等。造成传感器性能不稳定的原因是:随着时间的推移和环境条件的变化,构成传感器的各种材料与元器件性能将发生变化。传感器作为长期测量或反复使用的器件,其稳定性显得特别重要,其重要性甚至胜过精度指标,尤其是对那些很难或无法定期标定的场合。二、传感器的发展动向
开发新型传感器开发新材料新工艺的采用集成化、多功能化智能化开展基础研究,发现新现象,开发传感器的新材料和新工艺;实现传感器的集成化与智能化
1.开发新型传感器
新型传感器包括:①采用新原理;②填补传感器空白;③仿生传感器等方面。它们之间是互相联系的。2.开发新材料(1)半导体敏感材料(2)陶瓷材料(3)磁性材料(4)智能材料
在发展新型传感器中,离不开新工艺的采用。新工艺的含义范围很广,这里主要指与发展新型传感器联系特别密切的微细加工技术。该技术又称微机械加工技术,是近年来随着集成电路工艺发展起来的,它是离子束、电子束、分子束、激光束和化学刻蚀等用于微电子加工的技术,目前已越来越多地用于传感器领域。
3.新工艺的采用
4.集成化、多功能化多功能一体化,即将传感器与放大、运算以及温度补偿等环节一体化,组装成一个器件。
为同时测量几种不同被测参数,可将几种不同的传感器元件复合在一起,作成集成块。例如一种温、气、湿三功能陶瓷传感器已经研制成功。5.智能化
对外界信息具有检测、数据处理、逻辑判断、自诊断和自适应能力的集成一体化多功能传感器,这种传感器具有与主机互相对话的功能,可以自行选择最佳方案,能将已获得的大量数据进行分割处理,实现远距离、高速度、高精度传输等。传感器特性主要是指输出与输入之间的关系。2.5传感器的特性
当输入量随时间较快地变化时,这一关系称为动态特性。当输入量为常量,或变化极慢时,这一关系称为静态特性;稳定性(零漂)传感器温度供电各种干扰稳定性温漂分辨力冲击与振动电磁场线性滞后重复性灵敏度输入误差因素外界影响
传感器输入输出作用图输出取决于传感器本身,可通过传感器本身的改善来加以抑制,有时也可以对外界条件加以限制。衡量传感器特性的主要技术指标一、静态特性技术指标1.线性度传感器的输出输入关系或多或少地存在非线性。在不考虑迟滞、蠕变、不稳定性等因素的情况下,其静态特性可用下列多项式代数方程表示:式中:x—输入量;y—输出量;a0—零点输出;
a1—理论灵敏度;a2、a3、…、an—非线性项系数。各项系数不同,决定了特性曲线的具体形式。y=a0+a1x+a2x2+a3x3+…+anxn
通常用相对误差γL表示:ΔLmax一最大非线性误差;yFS—量程输出。在采用直线拟合线性化时,输出输入的校正曲线与其拟合曲线之间的最大偏差,就称为非线性误差或线性度一般来说,这些办法都比较复杂。所以在非线性误差不太大的情况下,总是采用直线拟合的办法来线性化。γL=±(ΔLmax/yFS)×100%①理论拟合;②端点连线平移拟合;③端点连线拟合;④过零旋转拟合;⑤最小二乘拟合直线拟合方法
a)理论拟合b)过零旋转拟合
c)端点连线拟合d)端点连线平移拟合设拟合直线方程:0yyixy=kx+bxI最小二乘拟合法最小二乘法拟合y=kx+b若实际校准测试点有n个,则第i个校准数据与拟合直线上响应值之间的残差为最小二乘法拟合直线的原理就是使为最小值,即Δi=yi-(kxi+b)
对k和b一阶偏导数等于零,求出a和k的表达式即得到k和b的表达式将k和b代入拟合直线方程,即可得到拟合直线,然后求出残差的最大值Lmax即为非线性误差。2.迟滞0yx⊿HmaxyFS迟滞特性式中△Hmax—正反行程间输出的最大差值。
迟滞误差的另一名称叫回程误差。传感器在正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。迟滞特性如图所示,它一般是由实验方法测得。迟滞误差一般以满量程输出的百分数表示,即3.重复性yx0⊿Rmax2⊿Rmax1重复性误差可用正反行程的最大偏差表示,即重复性是指传感器在输入按同一方向连续多次变动时所得特性曲线不一致的程度。△Rmax1正行程的最大重复性偏差,△Rmax2反行程的最大重复性偏差。4.灵敏度与灵敏度误差γs=(Δk/k)×100%由于某种原因,会引起灵敏度变化,产生灵敏度误差。灵敏度误差用相对误差表示,即可见,传感器输出曲线的斜率就是其灵敏度。对线性特性的传感器,其特性曲线的斜率处处相同,灵敏度k是一常数,与输入量大小无关。K=Δy/Δx传感器输出的变化量y与引起该变化量的输入变化量x之比即为其静态灵敏度,其表达式为分辨力用绝对值表示,用与满量程的百分数表示时称为分辨率。在传感器输入零点附近的分辨力称为阈值。
5.分辨力与阈值分辨力是指传感器能检测到的最小的输入增量。有些传感器,当输入量连续变化时,输出量只作阶梯变化,则分辨力就是输出量的每个“阶梯”所代表的输入量的大小。
6.稳定性稳定性是指传感器在长时间工作的情况下输出量发生的变化,有时称为长时间工作稳定性或零点漂移。
8.抗干扰稳定性7.温度稳定性温度稳定性又称为温度漂移,是指传感器在外界温度下输出量发生的变化。温度稳定性误差用温度每变化若干℃的绝对误差或相对误差表示,每℃引起的传感器误差又称为温度误差系数。指传感器对外界干扰的抵抗能力,例如抗冲击和振动的能力、抗潮湿的能力、抗电磁场干扰的能力等。评价这些能力比较复杂,一般也不易给出数量概念,需要具体问题具体分析。9.静态误差取2σ和3σ值即为传感器的静态误差。静态误差也可用相对误差来表示,即静态误差的求取方法如下:把全部输出数据与拟合直线上对应值的残差,看成是随机分布,求出其标准偏差,即静态误差是指传感器在其全量程内任一点的输出值与其理论值的偏离程度。yi—各测试点的残差;
n一测试点数。与精确度有关指标:精密度、准确度和精确度(精度)10、精确度准确度:说明传感器输出值与真值的偏离程度。精密度:说明测量传感器输出值的分散性,即对某一稳定的被测量,由同一个测量者,用同一个传感器,在相当短的时间内连续重复测量多次,其测量结果的分散程度。精确度:是精密度与准确度两者的总和,精确度高表示精密度和准确度都比较高。在最简单的情况下,可取两者的代数和。机器的常以测量误差的相对值表示。
(a)准确度高而精密度低(b)准确度低而精密度高(c)精确度高在测量中我们希望得到精确度高的结果。
被测量随时间变化的形式可能是各种各样的,只要输入量是时间的函数,则其输出量也将是时间的函数。通常研究动态特性是根据标准输入特性来考虑传感器的响应特性。二、传感器的动态特性动态特性指传感器对随时间变化的输入量的响应特性。标准输入有三种:正弦变化的输入阶跃变化的输入线性输入1.数学模型与传递函数线性系统的数学模型为一常系数线性微分方程。对线性系统动态特性的研究,主要是分析数学模型的输入量x与输出量y之间的关系,通过对微分方程求解,得出动态性能指标。对于线性定常(时间不变)系统,其数学模型为高阶常系数线性微分方程,即y——输出量;x——输入量;t——时间a0,a1,…,an——常数;b0,b1,…,bm——常数
——输出量对时间t的n阶导数;
——输入量对时间t的m阶导数动态特性的传递函数在线性或线性化定常系统中是指初始条件为0时,系统输出量的拉氏变换与输入量的拉氏变换之比。当传感器的数学模型初值为0时,对其进行拉氏变换,即可得出系统的传递函数Y(s)——传感器输出量的拉氏变换式;X(s)——传感器输入量的拉氏变换式上式分母是传感器的特征多项式,决定系统的“阶”数。可见,对一定常系统,当系统微分方程已知,只要把方程式中各阶导数用相应的s变量替换,即求出传感器的传递函数。正弦输入下传感器的动态特性(即频率特性)由传递函数导出为一复数,它可用代数形式及指数形式表示,即
=式中—分别为的实部和虚部;
—分别为的幅值和相角;K=可见,K值表示了输出量幅值与输入量幅值之比,即动态灵敏度,K值是ω的函数,称为幅频特性,以K(ω)表示。1.动态响应(正弦和阶跃)(1)正弦输入时的频率响应零阶传感器在零阶传感器中,只有a0与b0两个系数,微分方程为a0y=b0xK——静态灵敏度零阶输入系统的输入量无论随时间如何变化,其输出量总是与输入量成确定的比例关系。在时间上也不滞后,幅角等于零。一阶传感器微分方程除系数a1,a0
,b0外其他系数均为0,则a1(dy/dt)+a0y=b0xτ—时间常数(τ=a1/a0);K——静态灵敏度(K=b0/a0)传递函数:频率特性:幅频特性:相频特性:负号表示相位滞后时间常数τ越小,系统的频率特性越好二阶传感器很多传感器,如振动传感器、压力传感器等属于二阶传感器,其微分方程为:τ—时间常数,;ω0—自振角频率,ω0=1/τξ—阻尼比,;k—静态灵敏度,k=b0/a不同阻尼比情况下相对幅频特性即动态特性与静态灵敏度之比的曲线如图。传递函数幅频特性相频特性频率特性2.42.22.01.81.61.41.21.00.80.60.40.200.511.522.5(a)ωτ(b)0-30°-60°-90°-120°-150°-180°0.511.522.5ωτξ=0ξ=0.2ξ=0.4ξ=0.6ξ=1ξ=0.8ξ=0.707ξ=0ξ=0.2ξ=0.4ξ=0.6ξ=0.707ξ=0.8ξ=1ξ=0.8ξ=1ξ=0.707ξ=0.6ξ=0.4ξ=0.2ξ=0二阶传感器幅频与相频特性(a)幅频特性(b)相频特性
当ξ→0时,在ωτ=1处k(ω)趋近无穷大,这一现象称之为谐振。随着ξ的增大,谐振现象逐渐不明显。当ξ≥0.707时,不再出现谐振,这时k(ω)将随着ωτ的增大而单调下降。阻尼比的影响较大。(2)阶跃输入时的阶跃响应一阶传感器的阶跃响应对一阶系统的传感器,设在t=0时,x和y均为0,当t>0时,有一单位阶跃信号输入,如图。此时微分方程为tx01(dy/dt)+a0y=b1(dx/dt)+b0x齐次方程通解:非齐次方程特解:y2=1(t>0)方程解:tx01以初始条件y(0)=0代入上式,即得t=0时,C1=-1,所以输出的初值为0,随着时间推移y接近于1,当t=τ时,y=0.63在一阶系统中,时间常数值是决定响应速度的重要参数。二阶传感器的阶跃响应单位阶跃响应通式ω0——传感器的固有频率;ζ——传感器的阻尼比特征方程根据阻尼比的大小不同,分为四种情况:1)0<ξ<1(有阻尼):该特征方程具有共轭复数根
方程通解
根据t→∞
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年灯饰照明:户内照明项目筹资方案
- 青岛工程职业学院《公共部门战略管理》2023-2024学年第一学期期末试卷
- 在多多平台上如何打造爆款产品并持续运营
- 新课标数学教学法案例研究
- 防火材料的技术创新-岩棉研究
- 文创产业的市场定位与产品设计
- 《择时耳穴压豆辅助丹栀逍遥丸治疗肝郁化火型女童ICPP的临床研究》
- 文化旅游产业的发展与挑战
- 企业文化建设与推广汇报
- 中老年人智力保健指南
- 医疗机构舆情应急处置预案
- 中国计量大学《数据科学导论》2022-2023学年第一学期期末试卷
- 第六单元《平移、旋转和轴对称》-2024-2025学年三年级数学上册单元测试卷(苏教版)
- .NET开发工程师招聘面试题及回答建议(某世界500强集团)2024年
- OECD -二十国集团 经合组织公司治理原则2023
- 2024年广东省深圳市33校联考中考英语一模试卷
- 新版标准日本语.中级单词
- 污水处理设备供货安装技术服务方案
- 2024至2030年中国炔草酯数据监测研究报告
- 预防性侵安全教育主题课件
- 校园及周边安全隐患排查情况登记表
评论
0/150
提交评论