版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省忻州市解原联合学校2021年高三数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数y=f(x)是R上偶函数,且对于?x∈R都有f(x+6)=f(x)+f(3)成立,当x1,x2∈[0.3],且x1≠x2时,都有>0.对于下列叙述;①f(3)=0;
②直线x=﹣6是函数y=f(x)的一条对称轴;③函数y=f(x)在区间[﹣9,﹣6]上为增函数;
④函数y=f(x)在区间[﹣9,9]上有四个零点.其中正确命题的序号是()A.①②③ B.①② C.①②④ D.②③④参考答案:C【考点】抽象函数及其应用;命题的真假判断与应用.【分析】分析4个命题,对于①,在用特殊值法,将x=﹣3代入f(x+6)=f(x)+f(3)中,变形可得f(﹣3)=0,结合函数的奇偶性可得f(3)=f(﹣3)=0,可得①正确;对于②,结合①的结论可得f(x+6)=f(x),即f(x)是以6为周期的函数,结合函数的奇偶性可得f(x)的一条对称轴为y轴,即x=0,可得直线x=﹣6也是函数y=f(x)的一条对称轴,可得②正确;对于③,由题意可得f(x)在[0,3]上为单调增函数,结合函数是偶函数,可得f(x)在[﹣3,0]上为减函数,又由f(x)是以6为周期的函数,分析函数y=f(x)在区间[﹣9,﹣6]的单调性可得③错误;对于④,由①可得,f(3)=f(﹣3)=0,又由f(x)是以6为周期的函数,则f(﹣9)=f(9)=0,即函数y=f(x)在区间[﹣9,9]上有四个零点,④正确;综合可得答案.【解答】解:根据题意,依次分析命题,对于①,在f(x+6)=f(x)+f(3)中,令x=﹣3可得,f(3)=f(﹣3)+f(3),即f(﹣3)=0,又由函数y=f(x)是R上偶函数,则f(3)=f(﹣3)=0,则①正确;对于②,由①可得,f(3)=0,又由f(x+6)=f(x)+f(3),则有f(x+6)=f(x),即f(x)是以6为周期的函数,又由函数y=f(x)是R上偶函数,即f(x)的一条对称轴为y轴,即x=0,则直线x=﹣6也是函数y=f(x)的一条对称轴,②正确;对于③,由当x1,x2∈[0,3],都有>0,可得f(x)在[0,3]上为单调增函数,又由函数y=f(x)是R上偶函数,则f(x)在[﹣3,0]上为减函数,又由f(x)是以6为周期的函数,则函数y=f(x)在区间[﹣9,﹣6]上为减函数,③错误;对于④,由①可得,f(3)=f(﹣3)=0,又由f(x)是以6为周期的函数,则f(﹣9)=f(﹣3)=0,f(9)=f(3)=0,即函数y=f(x)在区间[﹣9,9]上有四个零点,④正确;正确的命题为①②④;故选C.2.若,则目标函数的取值范围是(
)A.[2,5] B.[1,5] C.[,2]
D.[2,6]参考答案:A3.现给出如下命题:①若直线l与平面a内无穷多条直线都垂直,则直线;②空间三点确定一个平面;③先后抛两枚硬币,用事件A表示“第一次抛出现正面向上”,用事件B表示“第二次抛出现反面向上”,则事件A和B相互独立且p(AB)=;④样本数据-1,-1,0,1,1的标准差是1.则其中正确命题的序号是(
)A.①④ B.①③ C.②③④ D.③④参考答案:D4.过双曲线C:(a>0,b>0)的右顶点作x轴的垂线与C的一条渐近线相交于A.若以C的右焦点为圆心、半径为2的圆经过A、O两点(O为坐标原点),则双曲线C的方程为(
) A. B. C. D.参考答案:A考点:双曲线的简单性质.专题:计算题;直线与圆;圆锥曲线的定义、性质与方程.分析:求出双曲线的右顶点和右焦点以及渐近线方程,可得A,再由圆的性质可得|AF|=|OF|=c=2,解方程可得a,b,进而得到双曲线方程.解答: 解:双曲线的右顶点为(a,0),右焦点F为(c,0),由x=a和一条渐近线y=x,可得A(a,b),以C的右焦点为圆心、半径为2的圆经过A、O两点(O为坐标原点),则|AF|=|OF|=c=2,即有=2,c2=a2+b2=4,解得a=1,b=,即有双曲线的方程为x2﹣=1,故选A.点评:本题考查双曲线的方程和性质,考查渐近线方程的运用和圆的性质,考查运算能力,属于基础题.5.已知是实数,若复数是纯虚数,则
(
)A.
B.
C.
D.参考答案:A考点:复数的乘除运算6.已知命题:,,,则是(
)A.,,B.,,C.,,D.,,参考答案:C试题分析:本题考查全称命题的否定.已知全称命题则否定为故选C.考点:全称命题的否定.7.如图框内的输出结果是()A.2401 B.2500 C.2601 D.2704参考答案:B【考点】程序框图.【专题】算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的S,i的值,当不满足条件i≤99时,退出循环,利用等差数列的求和公式即可得解.【解答】解:模拟执行程序框图,可得S=1+3+5+…+99=2500,故选:B.【点评】本题主要考查了循环结构的程序框图,等差数列的求和公式的应用,属于基础题.8.定义在R上的函数的导函数为,已知是偶函数,.若,且,则与的大小关系是()A.< B.=C.> D.不确定参考答案:【知识点】函数的奇偶性,单调性;导数.B3,B4,B12【答案解析】C
解析:解:因为是偶函数,所以关于对称,又因为,所以当,函数递减,函数递增,由可知,所以离对称轴近,对应的值大,所以,C选项正确.【思路点拨】根据函数的平移可知函数的对称轴,再根据导数可知函数的单调性,利用条件判断自变量的位置即可确定函数值的大小.9.在中,,AB=2,AC=1,E,F为边BC的三等分点,则(
)A.
B.
C.
D.参考答案:A10.已知函数满足,,则的零点个数最多有
A.
B.
C.
D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.设函数,则下列结论正确的有
(把你认为正确的序号都写上).①的值域为
②的图象关于轴对称③不是周期函数
④不是单调函数参考答案:①②④略12.设点M是椭圆上的点,以点M为圆心的圆与x轴相切于椭圆的焦点F,圆M与y轴相交于不同的两点P、Q,若为锐角三角形,则椭圆的离心率的取值范围为
.参考答案:
13.如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若,,则的值为
.参考答案:14.已知抛物线y2=2x的焦点是F,点P是抛物线上的动点,又有点A(3,2).则|PA|+|PF|的最小值是
,取最小值时P点的坐标
.参考答案:,抛物线的准线为。过P做PM垂直于准线于M过A做AN垂直于准线于N,则根据抛物线的定义知,所以,所以的最小值为,此时三点共线。,此时,代入抛物线得,即取最小值时P点的坐标为。15.“x>1”是“”的一个
条件.(在“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”选择一个填写)参考答案:充分不必要【考点】必要条件、充分条件与充要条件的判断.【分析】解根据对数函数的不等式,求出x的范围,结合集合的包含关系判断即可.【解答】解:由“”,解得:x>﹣1,故x>1是x>﹣1的充分不必要条件,故答案为:充分不必要.16.二项式的展开式中的系数为60,则实数等于
.参考答案:17.函数,非空数集,已知A=B,则参数a的值为
,参数b的所有取值构成的集合为
.参考答案:0
[0,4)
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知数列的前项和
,且,数列是首项为1,公比为的等比数列.(1)若数列是等差数列,求该等差数列的通项公式;(2)求数列的前项和.参考答案:(1)当时,;当时,,故;因为是等差数列,故成等差数列,即,解得,所以=1;所以,符合要求;(2)由(1)知,;所以=
,当时,;当时,.19.(本小题满分12分)甲、乙两人参加某种选拔测试.在备选10道题中,甲答对其中每道题的概率都是,乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选.(I)求乙得分的分布列和数学期望;
(II)求甲、乙两人中至少有一人入选的概率.参考答案:20.在等差数列中,,其前项和为,等比数列的各项均为正数,,公比为,且,. (Ⅰ)求与; (Ⅱ)若,求数列的前项和.参考答案:解:(Ⅰ)设的公差为,因为所以
解得或(舍),.故
,.(Ⅱ),略21.如图所示,某传动装置由两个陀螺T1,T2组成,陀螺之间没有滑动.每个陀螺都由具有公共轴的圆锥和圆柱两个部分构成,每个圆柱的底面半径和高都是相应圆锥底面半径的,且T1,T2的轴相互垂直,它们相接触的直线与T2的轴所成角θ=arctan.若陀螺T2中圆锥的底面半径为r(r>0).(1)求陀螺T2的体积;(2)当陀螺T2转动一圈时,陀螺T1中圆锥底面圆周上一点P转动到点P1,求P与P1之间的距离.参考答案:考点:旋转体(圆柱、圆锥、圆台);棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:(1)设陀螺T2圆锥的高为h,可得,进而可得陀螺T2圆柱的底面半径和高为,进而求出陀螺T2的体积;(2)设陀螺T1圆锥底面圆心为O,可得,进而利用弧长公式,求出圆心角,进而可得P与P1之间的距离.解答: 解:(1)设陀螺T2圆锥的高为h,则,即’得陀螺T2圆柱的底面半径和高为,
(2)设陀螺T1圆锥底面圆心为O,则,得在△POP1中,点评:本题考查的知识点是旋转体的体积公式,弧长公式,是三角函数与空间几何的综合应用,难度中档.22.设O为坐标原点,动点M在椭圆C上,过M作x轴的垂线,垂足为N,点P满足.(1)求点P的轨迹方程;(2)设点Q在直线上,且.证明:过点P且垂直于OQ的直线l过C的左焦点F.参考答案:(1);(2)见解析.【详解】试题分析:(1)转移法求轨迹:设所求动点坐标及相应已知动点坐标,利用条件列两种坐标关系,最后代入已知动点轨迹方程,化简可得所求轨迹方程;(2)证明直线过定点问题,一般方法是以算代证:即证,先设P(m,n),则需证,即根据条件可得,而,代入即得.试题解析:解:(1)设P(x,y),M(),则N(),由得.因为M()在C上,所以.因此点P的轨迹为.由题意知F(-1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 纸条画创意手工课程设计
- 思政大赛课程设计特色
- 楷书结构讲解课程设计
- 纸模课程设计
- 植物运营插画课程设计
- 矿山机械课程设计
- 环境噪音检测课程设计
- 幼儿园小小班课程设计
- 海洋信息化课程设计理念
- 无机盐合成中的微波辅助技术考核试卷
- 中国HDMI高清线行业市场动态分析及未来趋势研判报告
- 活鸡运输合同范例
- DB22T 277-2011 建筑电气防火检验规程
- 2024年基本公共卫生服务工作计划(三篇)
- 某物流公司投标书
- 2024-2030年中国铼行业供需趋势及发展规模分析报告
- 2023-2024学年《软件设计与体系结构》模拟试卷及答案解析
- 上海曹杨二中2025届物理高二第一学期期末调研试题含解析
- 2024-2025学年八年级上学期地理期中模拟试卷(湘教版+含答案解析)
- 北京邮电大学《大数据技术与应用实践》2023-2024学年期末试卷
- 心肺复苏培训课件
评论
0/150
提交评论