山西省忻州市智源中学2023年高二数学文模拟试题含解析_第1页
山西省忻州市智源中学2023年高二数学文模拟试题含解析_第2页
山西省忻州市智源中学2023年高二数学文模拟试题含解析_第3页
山西省忻州市智源中学2023年高二数学文模拟试题含解析_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省忻州市智源中学2023年高二数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图一个封闭的立方体,它6个表面各标出1、2、3、4、5、6这6个数字,现放成下面3个不同的位置,则数字l、2、3对面的数字是(

)A.4、5、6

B.6、4、5

C.5、4、6

D.5、6、4

参考答案:C2.某校从6名教师(含有甲、乙、丙)中选派3名教师同时去3个边远地区支教(每地1人),其中甲和丙不同去,甲和乙只能同去或同不去,则不同的选派方案共有(

)A.120种

B.90种

C.42种

D.36种参考答案:C分两步,第一步,先选三名老师,又分两类第一类,甲去,则乙一定去,丙一定不去,有C31=3种不同选法第二类,甲不去,则乙一定不去,丙可能去也可能不去,有C43=4种不同选法∴不同的选法有3+4=7种第二步,三名老师去3个边远地区支教,有A33=6,根据分步计数原理得不同的选派方案共有,7×6=42.故选:C.

3.设是椭圆上的点,若是椭圆的两个焦点,则(

)A.

B.

C.

D.参考答案:D4.“若,则是函数的极值点,因为中,且,所以0是的极值点.”在此“三段论”中,下列说法正确的是()A.推理过程错误

B.大前提错误

C.小前提错误

D.大、小前提错误参考答案:B略5.若函数f(x)=lnx+(a∈N)在(1,3)上只有一个极值点,则a的取值个数是()A.1 B.2 C.3 D.4参考答案:A【考点】6D:利用导数研究函数的极值.【分析】求出函数的导数,由函数的零点存在定理可得f′(1)f′(3)<0,进而验证a=4与a=时是否符合题意,即可求答案.【解答】解:f(x)的导数为f′(x)=﹣,当f′(1)f′(3)<0时,函数f(x)在区间(1,3)上只有一个极值点,即为(1﹣a)(﹣a)<0,解得4<a<;当a=4时,f′(x)=﹣=0,解得x=1?(1,3),当a=时,f′(x)=﹣=0在(1,3)上无实根,则a的取值范围是4<a<,且a∈N,即为a=5.故选:A.6.执行下面的程序框图,如果输入的n是4,则输出的p是()A.8

B.5C.3

D.2参考答案:C7.若函数在处取最小值,则a等于()A.1+

B.1+

C.3

D.4参考答案:C因为,所以,所以=4,当且仅当,即时等号成立,所以,故选C.

8.若则“”是“方程表示双曲线”的(

)A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件参考答案:A若,则,,所以方程表示双曲线,若方程表示双曲线,则,所以或,综上可知,“”是“方程表示双曲线”的充分不必要条件,所以选A.9.为了解某校老年、中年和青年教师的身体状况,已知老、中、青人数之比为3:7:5,现用分层抽样的方法抽取容量为n的样本,其中老年教师有18人,则样本容量n=(

)A.54 B.90 C.45 D.126参考答案:B【分析】根据分层抽样的概念即可求解。【详解】依题意得,解得,即样本容量为90.故选B【点睛】本题考查分层抽样的应用,属基础题。10.已知(

)A.6

B.8

C.

D.10参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.给出下列命题:①“数列{an}为等比数列”是“数列{anan+1}为等比数列”的充分不必要条件;②“a=2”是“函数f(x)=|x-a|在区间[2,+∞)上为增函数”的充要条件;③“m=3”是“直线(m+3)x+my-2=0与直线mx-6y+5=0互相垂直”的充要条件;④设a,b,c分别是△ABC三个内角A,B,C所对的边,若a=1,b=,则“A=30°”是“B=60°”的必要不充分条件.其中真命题的序号是________.参考答案:①④略12.某班有50名学生,一次考试后数学成绩ξ(ξ∈N)~正态分布N(100,102),已知P(90≤ξ≤100)=0.3,估计该班学生数学成绩在110分以上的人数为_________________.参考答案:10

略13.一盒子中装有6只产品,其中4只一等品,2只二等品,从中取产品两次,每次任取1只,做不放回抽样.则在第一次取到的是一等品的条件下,第二次取到的是二等品的概率为

.参考答案:从6只取产品两次,每次任取1只,做不放回抽样,且第一次取到的是一等品,共有种基本事件;其中在第一次取到的是一等品的条件下,第二次取到的是二等品的事件有种,所以概率为

14.在,则A中元素在B中所对应的元素为_______________。参考答案:15.已知矩阵A=,B=,则矩阵=

.参考答案:16.函数的单调递增区间是

.参考答案:1略17.椭圆的两个焦点为F1,F2,过F1作垂直于x轴的直线与椭圆相交,一个交点为P,则PF2=.参考答案:【考点】K4:椭圆的简单性质.【分析】求出椭圆的焦点坐标,求出通经,利用椭圆的定义求解即可.【解答】解:椭圆的焦点为F1(,0),a=2,过F1作垂直于x轴的直线与椭圆相交,一个交点为P,则PF1=,则PF2=2﹣=.故答案为:.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知双曲线的一个焦点为(4,0),离心率为e=2.(1)求双曲线的标准方程;(2)写出该双曲线的渐进线方程,并求它的焦点(4,0)到另一条渐进线的距离.参考答案:【考点】双曲线的简单性质.【分析】(1)由题意可知:双曲线的焦点在x轴,设双曲线的标准方程为:,由题意可知:c=4,e==2,即可求得a,根据双曲线的性质即可求得b,求得双曲线方程;(2)由双曲线的方程求得渐近线方程及另一个焦点,根据点到直线的距离公式即可求得焦点(4,0)到另一条渐进线的距离.【解答】解:(1)由双曲线的一个焦点为(4,0),即焦点在x轴上,设双曲线的标准方程为:,由题意有:,∴,∴双曲线的标准方程为:;(2)由(1)可知:该双曲线的渐近线方程为:,焦点(4,0)到渐近线距离为:,∴焦点(4,0)到另一条渐进线的距离2.19.已知数列{an}满足a1=3,an+1-3an=3n(n∈N*),数列{bn}满足.(1)证明数列{bn}是等差数列并求数列{bn}的通项公式;(2)求数列{an}的前n项和Sn.参考答案:【考点】数列递推式;84:等差数列的通项公式;8E:数列的求和.【分析】(1)由,可得,然后检验bn+1﹣bn是否为常数即可证明,进而可求其通项(2)由题意可先求an,结合数列的通项的特点,考虑利用错位相减求和即可求解【解答】解(1)证明:由,得,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣所以数列{bn}是等差数列,首项b1=1,公差为﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴Sn=a1+a2+…+an=3×1+4×3+…+(n+2)×3n﹣1﹣﹣﹣﹣①∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣②①﹣②得=2+1+3+32+…+3n﹣1﹣(n+2)×3n=﹣﹣﹣﹣﹣﹣∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣20.(本小题满分14分)在如图所示的几何体中,是边长为的正三角形,,平面,平面平面,,且.(1)证明://平面;(2)证明:平面平面;(3)求该几何体的体积.参考答案:证明:(1)取的中点,连接、,由已知,可得:,又因为平面⊥平面,平面平面,所以平面,因为平面,所以,

又因为平面,平面,所以平面.

4分(2)由(1)知,又,,所以四边形是平行四边形,则有,

由(1)得,又,平面,所以平面,

又平面,所以,由已知,,平面,

因为平面,所以平面平面.

10分(也可利用勾股定理等证明题中的垂直关系)(3),平面,

11分,易得四边形为矩形其面积,

12分故该几何体的体积=.

14分21.(本小题满分12分)设等差数列满足,.(Ⅰ)求的通项公式;(Ⅱ)求的前项和及使得最大的序号的值.参考答案:(Ⅰ)由及,得;……3分所以数列的通项公式为……6分(Ⅱ),……9分所以时取得最大

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论