山西省忻州市代县上馆镇五里村中学2018-2019学年高二数学理期末试题含解析_第1页
山西省忻州市代县上馆镇五里村中学2018-2019学年高二数学理期末试题含解析_第2页
山西省忻州市代县上馆镇五里村中学2018-2019学年高二数学理期末试题含解析_第3页
山西省忻州市代县上馆镇五里村中学2018-2019学年高二数学理期末试题含解析_第4页
山西省忻州市代县上馆镇五里村中学2018-2019学年高二数学理期末试题含解析_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省忻州市代县上馆镇五里村中学2018-2019学年高二数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.直线x+y-1=0到的角是(

)A.

B.

C.

D.参考答案:D2.若函数的导函数在区间上是增函数,则函数在区间上的图象可能是参考答案:B略3.椭圆25x2+9y2=225的长轴长、短轴长、离心率依次是()A.5、3、0.8 B.10、6、0.8 C.5、3、0.6 D.10、6、0.6参考答案:B【考点】椭圆的简单性质.【分析】根据题意,将椭圆的方程变形为标准方程,分析可得a、b的值,进而计算可得c的值,结合椭圆的几何性质可得答案.【解答】解:根据题意,椭圆的方程为:25x2+9y2=225,变形可得+=1,则其中a==5,b==3,则有c==4;故椭圆的长轴长2a=10,短轴长2b=6,离心率e==0.8;故选:B.4.曲线在点处的切线方程为(

).A.

B.

C.

D.参考答案:B5.已知点,则直线的倾斜角是 ( )A. B. C. D.参考答案:C略6.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A. B.3 C. D.2参考答案:B【考点】抛物线的简单性质.【分析】求得直线PF的方程,与y2=8x联立可得x=1,利用|QF|=d可求.【解答】解:设Q到l的距离为d,则|QF|=d,∵=4,∴|PQ|=3d,∴不妨设直线PF的斜率为﹣=﹣2,∵F(2,0),∴直线PF的方程为y=﹣2(x﹣2),与y2=8x联立可得x=1,∴|QF|=d=1+2=3,故选:B.【点评】本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.7.若的三个内角满足,则(

)A.一定是锐角三角形

B.一定是直角三角形C.一定是钝角三角形

D.可能是锐角三角形,也可能是钝角三角形参考答案:C8.若,则下列不等式中,正确的不等式有

A.1个

B.2个

C.3个

D.4个参考答案:C9.在三棱锥中,,,点分别是的中点,平面,则直线与平面所成角的正弦值为(

)A.

B.

C.

D.参考答案:C∵AB⊥BC,OA=OC,∴OA=OB=OC,又∵OP⊥平面ABC∴PA=PB=PC.取BC中点E,连接PE,则BC⊥平面POE,作OF⊥PE于F,连接DF,则OF⊥平面PBC∴∠ODF是OD与平面PBC所成的角。设,在Rt△POA中,PO=1,在Rt△POC中,D是PC的中点,PC=,∴OD=,在Rt△POE中,,在Rt△ODF中故选C.

10.图l是某县参加2014年高考的学生身高条形统计圈,从左到右的各条形表示的学生人数

依次记为(如表示身高(单位:cm)在[150,155)内的学生人数).图2是统计图1中身高在一定范围内学生人数的一个算法流程图,现要统计身高在160~

180cm(含l60cm,不吉180cm)的学生人数,那么在流程图中的判断框内应填写的条件是A.B

C.D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.函数的定义域为

.参考答案:12.如果,,那么是的

.(在“充分不必要条件”、“必要不充分条件”、“充要条件”、“既不充分也不必要”中选择一个填空)参考答案:充分不必要略13.设实数满足,则的最大值是_____________.参考答案:2略14.在平面直角坐标系XOY中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是______.参考答案:15.数列……的前100项的和等于

参考答案:略16.设,若是的充分不必要条件,则实数的取值范围为

参考答案:17.若指数函数的图象过点(-2,4),则__________.参考答案:【分析】设指数函数为,代入点的坐标求出的值,再求的值.【详解】设指数函数为,所以.所以.故答案为:【点睛】本题主要考查指数函数的解析式的求法和指数函数求值,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,底面ABCD是梯形,其中AD∥BC,BA⊥AD,AC与BD交于点O,M是AB边上的点,且AM=2BM,已知PA=AD=4,AB=3,BC=2.(1)求平面PMC与平面PAD所成锐二面角的正切;(2)已知N是PM上一点,且ON∥平面PCD,求的值.参考答案:考点:二面角的平面角及求法;直线与平面平行的判定.专题:空间位置关系与距离;空间角.分析:解法1:(1)连接CM并延长交DA的延长线于E,说明∠MFA是平面PMC与平面PAD所成锐二面角的平面角然后求解tan∠MFA==,得到结果.(2)连接MO并延长交CD于G,连接PG,在△BAD中,通过,说明MO∥AD,然后求解的值.解法2(1)以A为坐标原点,AB、AD、AP为x.y,z轴建立如图所示直角坐标系,求出平面PMC的法向量,平面PAD的法向量,通过向量的数量积求解平面PMC与平面PAD所成锐二面角的正切.(2)求出平面PCD的法向量,设=λ,然后求解即可.解答: 解法1:(1)连接CM并延长交DA的延长线于E,则PE是平面PMC与平面PAD所成二面角的棱,过A作AF垂直PE于F,连接MF.∵PA⊥平面ABCD,∴PA⊥MA,又MA⊥AD,∴MA⊥平面PAD,∵AF⊥PE,∴MF⊥PE,∴∠MFA是平面PMC与平面PAD所成锐二面角的平面角…∵BC=2,AD=4,BC∥AD,AM=2MB∴AE=4,又PA=4,∴AF=∴tan∠MFA==,所以平面PMC与平面PAD所成锐二面角的正切为…(2)连接MO并延长交CD于G,连接PG∵ON∥平面PCD,∴ON∥PG在△BAD中∵,又∴∴MO∥AD…又在直角梯形ABCD中,MO=OG=,∵ON∥PG∴PN=MN,∴…解法2(1)以A为坐标原点,AB、AD、AP为x.y,z轴建立如图所示直角坐标系,则A(0,0,0)、B(3,0,0)、C(3,2,0)、D(0,4,0)、M(2,0,0)、P(0,0,4)、O(2,4/3,0)设平面PMC的法向量是=(x,y,z),则∵=(1,2,0),=(﹣2,0,4)∴令y=﹣1,则x=2,z=1∴=(2,﹣1,1)又AB⊥平面PAD,∴=(1,0,0)是平面PAD的法向量∴∴所以平面PMC与平面PAD所成锐二面角的正切为…(2)设平面PCD的法向量=(x’,y’,z’)∵=(3,2,﹣4),=(0,4,﹣4)∴令y'=3,则x'=2,z'=3∴设=λ,则∵=(2,0,﹣4)∴=(2λ,0,﹣4λ)==(2λ﹣2,﹣4/3,4﹣4λ)∵⊥∴4λ﹣4﹣4+12﹣12λ=0∴,∴…点评:本题考查二面角的平面角的求法,几何法与向量法的应用,考查空间想象能力以及计算能力.19.(本小题满分12分)如图,直二面角中,四边形是边长为的正方形,,为上的点,且⊥平面.

(1)求证:⊥平面;(2)求点到平面的距离.

参考答案:(1)平面ACE.

∵二面角D—AB—E为直二面角,且,平面ABE.又∵,BF平面BCE,CB平面BCE,

------------4分设平面AEC的一个法向量为,则解得

令得是平面AEC的一个法向量.

∵AD//z轴,AD=2,∴,∴点D到平面ACE的距离

---------12分20.(12分)已知函数f(x)=sin(2x﹣)+2cos2x﹣1(x∈R).(1)求f(x)的单调递增区间;(2)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知f(A)=,b,a,c成等差数列,且=9,求a的值.参考答案:【考点】正弦函数的单调性;数列与三角函数的综合;三角函数中的恒等变换应用.【分析】(I)利用两角和差的三角公式化简f(x)的解析式,得到sin(2x+),由2kπ﹣≤(2x+)≤2kπ+,解出x的范围,即得f(x)的单调递增区间.(II)在△ABC中,由,求得A的值;根据b,a,c成等差数列以及=9,利用余弦定理求得a值.【解答】解:(I)f(x)==sin2x+cos2x=sin(2x+).令

2kπ﹣≤(2x+)≤2kπ+,可得

kπ﹣≤x≤kπ+,k∈z.即f(x)的单调递增区间为,k∈z.(II)在△ABC中,由,可得sin(2A+)=,∵<2A+<2π+,∴2A+=或,∴A=(或A=0舍去).∵b,a,c成等差数列可得2a=b+c,∵=9,∴bccosA=9,即bc=18.由余弦定理可得a2=b2+c2﹣2bc?cosA=(b+c)2﹣3bc=4a2﹣54,求得a2=18,∴a=3.【点评】本题考查等差数列的性质,正弦函数的单调性,两角和差的三角公式、余弦定理的应用,化简函数的解析式是解题的突破口,属于中档题.21.如图,已知点D(0,-2),过点D作抛物线:的切线l,切点A在第二象限。(1)求切点A的纵坐标;(2)若离心率为的椭圆恰好经过A点,设切线l交椭圆的另一点为B,若设切线l,直线OA,OB的斜率为k,,①试用斜率k表示②当取得最大值时求此时椭圆的方程。

参考答案:解:(1)设切点A,依题意则有解得,即A点的纵坐标为2

……………3分(2)依题意可设椭圆的方程为,直线AB方程为:;由得①由(1)可得A,将A代入①可得,故椭圆的方程可简化为;

………………5分联立直线AB与椭圆的方程:消去Y得:,则

………………8分又∵,∴k∈[-2,-1];即……9分(3)由可知上为单调递增函数,故当k=-1时,取到最大值,此时P=4,故椭圆的方程为…12分略22.已知椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点P(,).(Ⅰ)求椭圆C的离心率;(Ⅱ)过点F2的直线l与椭圆C相交于P,Q两点,且,求直线l的方程.参考答案:【考点】直线与圆锥曲线的关系;椭圆的简单性质.【分析】(Ⅰ)利用椭圆定义求出长轴长,则离心率可求;(Ⅱ)分类设出直线l的方程,斜率不存在时极易验证不合题意,斜率存在时,联立直线方程和椭圆方程,利用根与系数关系得到两

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论