山西省太原市太钢集团有限公司第一中学高二数学理下学期期末试卷含解析_第1页
山西省太原市太钢集团有限公司第一中学高二数学理下学期期末试卷含解析_第2页
山西省太原市太钢集团有限公司第一中学高二数学理下学期期末试卷含解析_第3页
山西省太原市太钢集团有限公司第一中学高二数学理下学期期末试卷含解析_第4页
山西省太原市太钢集团有限公司第一中学高二数学理下学期期末试卷含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省太原市太钢集团有限公司第一中学高二数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若命题“”为假,且“”为假,则A.“”为假

B假

C.真

D.不能判断的真假参考答案:B2.有10个乒乓球,将它们任意分成两堆,求出这两堆乒乓球个数的乘积,再将每堆乒乓球任意分成两堆并求出这两堆乒乓球个数的乘积,如此下去,直到不能再分为止,则所有乘积的和为(

)A.45 B.55 C.90 D.100参考答案:A【考点】归纳推理.【专题】等差数列与等比数列;推理和证明.【分析】用特殊值法,假设每次分出一个,分别求出每一次的乘积,然后等差数列的性质相加可得答案.【解答】解:假设每次分堆时都是分出1个球,第一次分完后应该一堆是1个球,另一堆n﹣1个,则乘积为1×(n﹣1)=n﹣1;第二次分完后应该一堆是1个球,另一堆n﹣2个,则乘积为1×(n﹣2)=n﹣2;依此类推最后一次应该是应该一堆是1个球,另一堆1个,则乘积为1×1=1;设乘积的和为Tn,则Tn=1+2+…+(n﹣1)=n(n﹣1)当n=10时,T10=×10×(10﹣1)=45故选:A【点评】本题主要考查等差数列的求和.属基础题.在解答选择填空题时,特殊值法是常用方法之一.解决本题的关键在于特殊值法的应用.3.已知函数,若、,,使得成立,则a的取值范围是(

).A. B. C. D.或参考答案:B【分析】对的范围分类讨论,当时,函数在上递增,在上递减,即可判断:、,,使得成立.当时,函数在上单调递增,即可判断:一定不存在、,,使得成立,问题得解.【详解】当时,,函数在上递增,在上递减,则:、,,使得成立.当时,,函数在上递增,在也递增,又,所以函数在上单调递增,此时一定不存在、,,使得成立.故选:B【点睛】本题主要考查了分类思想及转化思想,还考查了函数单调性的判断,属于难题。4.过点且垂直于直线的直线方程为

()A.

B.

C.

D.参考答案:A5.抛物线上一点M到焦点的距离是,则点M的横坐标是(

)A.

B.

C.

D.

参考答案:B略6.设,则的值为

(

)(A).0

(B).-1(C).1(D).参考答案:C略7.不等式组表示的平面区域是(

) A.矩形 B.三角形

C.直角梯形

D.等腰梯形参考答案:D略8.若(x2﹣1)+(x2+3x+2)i是纯虚数,则实数x的值是()A.1B.﹣1C.1或﹣1D.﹣1或﹣2参考答案:A考点:复数的基本概念.专题:计算题.分析:(x2﹣1)+(x2+3x+2)i是纯虚数,实部为0,虚部不为0,求解不等式组即可确定x的值.解答:解:(x2﹣1)+(x2+3x+2)i是纯虚数,则解得:x=1故选A点评:本题考查复数的基本概念,考查计算能力,是基础题.9.已知集合,,则如图中阴影部分所表示的集合为(

)A. B.C. D.参考答案:D【分析】由图象可知阴影部分对应的集合为,然后根据集合的基本运算求解即可.【详解】由Venn图可知阴影部分对应的集合为,或,,,即,故选D.【点睛】本题主要考查集合的计算,利用图象确定集合关系是解题的关键,考查分析问题和解决问题的能力,属于基础题.10.已知,,则的最小值(

)A.

B.

C.

D.参考答案:C∵向量,,当t=0时,取得最小值.故答案为:.

二、填空题:本大题共7小题,每小题4分,共28分11.在极坐标系中,直线ρsinθ+ρcosθ=2被圆ρ=2截得的弦长为

.参考答案:4【考点】Q4:简单曲线的极坐标方程.【专题】36:整体思想;4R:转化法;5S:坐标系和参数方程.【分析】把极坐标方程化为直角坐标方程,利用点到直线的距离公式求出弦心距,再利用弦长公式求得弦长.【解答】解:∵直线ρsinθ+ρcosθ=2,∴直角坐标方程为x+y﹣2=0,圆ρ=2即x2+y2=8,表示以原点为圆心、半径等于2的圆.弦心距d==2,可得弦长为2=2=4,故答案为:4.【点评】本题主要考查把极坐标方程化为直角坐标方程的方法,点到直线的距离公式的应用,直线和圆的位置关系,属于基础题.12.若,则=参考答案:13.已知双曲线﹣=1(a>0,b>0)的右焦点为F2,过F2作其中一条渐近线的垂线,分别交y轴和该渐近线于M,N两点,且=3,则=.参考答案:【考点】双曲线的简单性质.【专题】数形结合;转化法;圆锥曲线的定义、性质与方程.【分析】设渐近线的方程为y=x,过N作x轴的垂线,垂足为P,根据向量关系建立长度关系进行求解即可.【解答】解:设渐近线的方程为y=x,过N作x轴的垂线,垂足为P,由=3,得==,得N的坐标为(,),∵NF2⊥ON,∴=﹣,化简得=,则=,故答案为:【点评】本题主要考查双曲线向量的计算,根据条件结合向量共线的条件进行转化是解决本题的关键.14.函数f(x)=-a2x-1+2恒过定点的坐标是________.参考答案:15.已知等差数列{an}的前三项依次为a﹣1,2a+1,a+4,则a=

.参考答案:【考点】等差数列的通项公式.【分析】a﹣1,2a+1,a+4是等差数列{an}的前三项,直接利用等差中项的概念列式计算a的值.【解答】解:因为a﹣1,2a+1,a+4是等差数列{an}的前三项,所以有2(2a+1)=(a﹣1)+(a﹣4),解得:a=.故答案为.16.与双曲线有共同渐近线,且过点的双曲线方程是___________。参考答案:略17.在样本的频率分布直方图中,共有5个小长方形,若中间一个小长方形的面积等于其他4个小长方形的面积和的,且样本容量为100,则正中间的一组的频数为

.参考答案:20三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知曲线C:x2+y2-2x-4y+m=0.(Ⅰ)当m为何值时,曲线C表示圆;(Ⅱ)若曲线C与直线x+2y-4=0交于M、N两点,且OM⊥ON(O为坐标原点),求m的值.参考答案:(1)由D2+E2-4F=4+16-4m=20-4m>0,得m<5.(2)设M(x1,y1),N(x2,y2),由OM⊥ON得x1x2+y1y2=0.将直线方程x+2y-4=0与曲线C:x2+y2-2x-4y+m=0联立并消去y得ks5u5x2-8x+4m-16=0,由韦达定理得x1+x2=①,x1x2=②,又由x+2y-4=0得y=(4-x),∴x1x2+y1y2=x1x2+(4-x1)·(4-x2)=x1x2-(x1+x2)+4=0.将①、②代入得m=.

略19.(本小题满分12分)已知.(I)当时,p为真命题且非q为真命题,求x的取值范围;(Ⅱ)若p是q的充分条件,求实数m的取值范围.参考答案:20.如图,点P(0,﹣1)是椭圆C1:+=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求△ABD面积的最大值时直线l1的方程.参考答案:【考点】直线与圆锥曲线的关系;椭圆的标准方程.【分析】(1)由题意可得b=1,2a=4,即可得到椭圆的方程;(2)设A(x1,y1),B(x2,y2),D(x0,y0).由题意可知:直线l1的斜率存在,设为k,则直线l1的方程为y=kx﹣1.利用点到直线的距离公式和弦长公式即可得出圆心O到直线l1的距离和弦长|AB|,又l2⊥l1,可得直线l2的方程为x+kx+k=0,与椭圆的方程联立即可得到点D的横坐标,即可得出|PD|,即可得到三角形ABD的面积,利用基本不等式的性质即可得出其最大值,即得到k的值.【解答】解:(1)由题意可得b=1,2a=4,即a=2.∴椭圆C1的方程为;(2)设A(x1,y1),B(x2,y2),D(x0,y0).由题意可知:直线l1的斜率存在,设为k,则直线l1的方程为y=kx﹣1.又圆的圆心O(0,0)到直线l1的距离d=.∴|AB|==.又l2⊥l1,故直线l2的方程为x+ky+k=0,联立,消去y得到(4+k2)x2+8kx=0,解得,∴|PD|=.∴三角形ABD的面积S△==,令4+k2=t>4,则k2=t﹣4,f(t)===,∴S△=,当且仅,即,当时取等号,故所求直线l1的方程为.21.已知函数;(Ⅰ)求不等式的解集;(Ⅱ)若的解集非空,求m的取值范围.参考答

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论