版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省太原市体校附属中学2022-2023学年高一数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数的部分图象大致是(
)参考答案:A略2.函数的图象是()A. B. C. D.参考答案:D【考点】函数的图象.【专题】数形结合.【分析】本题考查的知识点是分段函数图象的性质,及函数图象的作法,由绝对值的含义化简原函数式,再分段画出函数的图象即得.【解答】解:函数可化为:当x>0时,y=1+x;它的图象是一条过点(0,1)的射线;当x<0时,y=﹣1+x.它的图象是一条过点(0,﹣1)的射线;对照选项,故选D.【点评】本小题主要考查函数、函数的图象、绝对值的概念等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.3.设f(x)=3x+3x﹣8,用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中得f(1)<0,f(1.5)>0,f(1.25)<0,f(2)>0则方程的根应落在区间()A.(1,1.25) B.(1.25,1.5) C.(1.5,2) D.不能确定参考答案:B【考点】二分法的定义.【分析】根据函数的零点存在性定理,由f(1)与f(1.5)的值异号得到函数f(x)在区间(1,1.5)内有零点,同理可得函数在区间(1.25,1.5)内有零点,从而得到方程3x+3x﹣8=0的根所在的区间.【解答】解:∵f(1)<0,f(1.5)>0,∴在区间(1,1.5)内函数f(x)=3x+3x﹣8存在一个零点又∵f(1.5)>0,f(1.25)<0,∴在区间(1.25,1.5)内函数f(x)=3x+3x﹣8存在一个零点,由此可得方程3x+3x﹣8=0的根落在区间(1.25,1.5)内,故选:B4.已知集合则(
)
A.
B.
C.
D.
参考答案:A5.若直线与直线互相平行,则a的值为(
)A.4 B. C.5 D.参考答案:C【分析】根据两条存在斜率的直线平行,斜率相等且在纵轴上的截距不相等这一性质,可以求出的值.【详解】直线的斜率为,在纵轴的截距为,因此若直线与直线互相平行,则一定有直线的斜率为,在纵轴的截距不等于,于是有且,解得,故本题选C.【点睛】本题考查了已知两直线平行求参数问题.其时本题也可以运用下列性质解题:若直线与直线平行,则有且.6.在中,,则的取值范围是()
A.
B. C. D.参考答案:C7.已知α、β是两个不同平面,m,n,l是三条不同直线,则下列命题正确的是()A.若m∥α,n⊥β且m⊥n,则α⊥β B.若m?α,n?α,l⊥n,则l⊥αC.若m∥α,n⊥β且α⊥β,则m∥n D.若l⊥α且l⊥β,则α∥β参考答案:D【考点】空间中直线与平面之间的位置关系.【分析】在A中,α与β相交或平行;在B中,l与α相交、平行或l?α;在C中,m与n相交、平行或异面;在D中,由面面平行的性质定理得α∥β.【解答】解:由α、β是两个不同平面,m,n,l是三条不同直线,知:在A中,若m∥α,n⊥β且m⊥n,则α与β相交或平行,故A错误;在B中,若m?α,n?α,l⊥n,则l与α相交、平行或l?α,故B错误;在C中,若m∥α,n⊥β且α⊥β,则m与n相交、平行或异面,故选C;在D中,若l⊥α且l⊥β,则由面面平行的性质定理得α∥β,故D正确.故选:D.8.已知数列是等差数列,,,则前项和中最大的是(
)A. B. C.或 D.或参考答案:D略9.下列函数中,既是奇函数又是增函数的为()A.y=cosx﹣1B.y=﹣x2C.y=x?|x|D.y=﹣参考答案:C考点:函数奇偶性的判断;函数单调性的判断与证明.专题:计算题;函数的性质及应用.分析:运用常见函数的奇偶性和单调性以及定义,即可得到既是奇函数又是增函数的函数.解答:解:对于A.定义域为R,f(﹣x)=cos(﹣x)﹣1=cosx﹣1=f(x),则为偶函数,则A不满足条件;对于B.定义域为R,f(﹣x)=f(x),则为偶函数,则B不满足条件;对于C.定义域为R,f(﹣x)=(﹣x)|﹣x|=﹣x|x|=﹣f(x),则为奇函数,当x>0时,f(x)=x2递增,且f(0)=0,当x<0时,f(x)=﹣x2递增,则f(x)在R上递增,则C满足条件;对于D.定义域为{x|x≠0},关于原点对称,f(﹣x)==﹣f(x),当x>0时,f(x)递增,当x<0时,f(x)递增,但在定义域内不为递增,则D不满足条件.故选:C.点评:本题考查函数的奇偶性和单调性的判断,考查常见函数的奇偶性和单调性和定义的运用,考查运算能力,属于基础题和易错题.10.已知函数f(x)=+的最大值为M,最小值为m,则的值为()A. B. C. D.参考答案:A【考点】函数的最值及其几何意义.【分析】先求出函数的定义域,再变形到根号下得y=,利用二次函数的性质求最值即可.【解答】解:由题意,函数的定义域是[﹣3,1]y=+=,由于﹣x2﹣2x+3在[﹣3,1]的最大值是4,最小值是0,故M=2,最小值m=2,则的值为,故选:A.二、填空题:本大题共7小题,每小题4分,共28分11.将函数=3x的图象向右平移2个单位后得到的图象,再作与关于y轴对称的的图象,则=___________.参考答案:略12.数列{an}满足下列条件:,且对于任意正整数n,恒有,则______.参考答案:512【分析】直接由,可得,这样推下去
,再带入等比数列的求和公式即可求得结论。【详解】故选C。【点睛】利用递推式的特点,反复带入递推式进行计算,发现规律,求出结果,本题是一道中等难度题目。13.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x(x∈N*)件.当x≤20时,年销售总收入为(33x﹣x2)万元;当x>20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y万元,则y(万元)与x(件)的函数关系式为
,该工厂的年产量为
件时,所得年利润最大.(年利润=年销售总收入﹣年总投资)参考答案:y=,16.【考点】函数模型的选择与应用.【分析】根据年利润=年销售总收入﹣年总投资,确定分段函数解析式,分别确定函数的最值,即可得到结论.【解答】解:由题意,年利润=年销售总收入﹣年总投资,则当x≤20时,年利润y=(33x﹣x2)﹣(100+x)=﹣x2+32x﹣100;当x>20时,年利润y=260﹣(100+x)=160﹣x;∴y=;当x≤20时,y=﹣x2+32x﹣100=﹣(x﹣16)2+156,∴x=16时,y取得最大值156万元;当x>20时,y=160﹣x<140万元∵156>140,∴x=16时,利润最大值156万元故答案为:y=;16【点评】本题考查函数模型的构建,考查函数的最值,考查学生分析解决问题的能力,属于中档题.14.如果直线y=ax+2与直线y=3x﹣b关于直线y=x对称,那么a+b=
.参考答案:【考点】IQ:与直线关于点、直线对称的直线方程.【分析】由直线y=ax+2,解得(a≠0)x=,把x与y互换可得:y=.根据直线y=ax+2与直线y=3x﹣b关于直线y=x对称,可得3=,﹣=﹣b,解得a,b.【解答】解:由直线y=ax+2,解得(a≠0)x=,把x与y互换可得:y=.∵直线y=ax+2与直线y=3x﹣b关于直线y=x对称,∴3=,﹣=﹣b,解得a=,b=6.∴a+b=.故答案为:.15.设函数,若实数满足,请将按从小到大的顺序排列
(用“”连接).
参考答案:略16.在平行四边形ABCD中,E和F分别是边CD和BC的中点,若=λ+μ,其中λ、μ∈R,则λ+μ=
.参考答案:【考点】9C:向量的共线定理.【分析】设=,=,表示出和,由=(+),及=λ+μ,解出λ和μ的值.【解答】解析:设=,=,那么=+,=+,又∵=+,∴=(+),即λ=μ=,∴λ+μ=.故答案为:.17.已知扇形的圆心角为,半径为2,则扇形的弧长为_________参考答案:【分析】直接根据扇形的弧长公式求解即可。【详解】【点睛】本题考查了扇形的弧长公式。本题的关键点是根据1弧度角的定义来理解弧度制下的扇形弧长公式。三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知函数.
(1)用定义证明函数在上为减函数.
(2)求在上的最小值.参考答案:(1)证明:设,且,…………......4分,且,∴,且…………7分根据函数单调性的定义知:函数在上为减函数.…….8分(2)∵函数在上为减函数,∴函数在上为减函数,………………..10分∴当x=-1时,.……………….12分19.(本小题满分12分)已知向量,点P在轴的非负半轴上(O为原点).(1)当取得最小值时,求的坐标;(2)设,当点满足(1)时,求的值.参考答案:(1)设,--------------------------------------------------------1分则,
------------------------------------------3分∴
----------------------------------------------5分∴当时,取得最小值,此时,
----------------7分(2)由(1)知,=-6
--------------------------------------------------------10分∴
-----------------------------12分20.(本小题满分12分)已知定义在区间上的函数的图像关于直线对称,当时,函数的图像如下图所示。
(Ⅰ)求函数在上的解析式;(Ⅱ)求方程的解.参考答案:解:(Ⅰ)由图像知。当时,将代入得。因为
故。所以时,。由关于直线对称,当21.在△ABC中,a,b,c分别是角A,B,C的对边,且(1)求的值;(2)若,且,求△ABC的面积.参考答案:(1)(2)【分析】(1)化简得,即可求出,问题得解。(2)利用余弦定理及求得,再利用三角形面积公式求解即可。【详解】(1)由正弦定理及,有,所以,又因为,,所以,因为,所以,又,所以,.(2)在中,由余弦定理可得,又,所以有,所以的面积为.【点睛】本题主要考查了正、余弦定理及诱导公式、同角三角函数基本关系,三角形面积公式,考查计算能力,属于基础题。22.如图,函数y=2cos(ωx+φ)(ω>0,0≤φ≤)的图象与y轴交于点(0,),周期是π.(1)求函数解析式,并写出函数图象的对称轴方程和对称中心;(2)已知点A(,0),点P是该函数图象上一点,点Q(x0,y0)是PA的中点,当y0=,x0∈[,π]时,求x0的值.参考答案:【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;余弦函数的图象.【分析】(1)由图象与y轴交于点(0,),周期是π.可得ω和φ的值,从而可得函数解析式,根据余弦函数的性质可求函数图象的对称轴方程和对称中心(2)点Q(x0,y0)是PA的中点,点A(,0),利用中点坐标求出P的坐标,点P是该函数图象上一点,代入函数解析式,化简,根据y0=,x0∈[,π],求解x0的值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿园保育员实习合同
- 纺织翻新施工合同
- 新能源顾问聘用协议
- 乳胶漆施工服务协议教育机构
- 垃圾处理分包协议
- 展览馆真石漆施工合同
- 休闲运动中心施工协议
- 铁路新建塔机租赁合同
- 婴儿用品快递租赁合同
- 银行 融资合同范例
- Unit 4 My Favourite Subject Section B(教学教学设计) 2024-2025学年人教版(2024)七年级英语上册
- 汽车之家:2024年增换购用户需求洞察1727674734
- 陕西省师大附中2025届高三下学期联考物理试题含解析
- 读后续写15种高分句式
- 2024电力巡检无人机自动机场技术标准
- 2024至2030年中国储能变流器(PCS)行业市场深度分析及投资决策建议报告
- 专题6:板块模型(教学设计) 2023-2024学年高一物理同步讲练课堂(人教版2019必修第一册)
- 小学科学《点亮小灯泡》教学课件
- 生成式人工智能嵌入养老服务的机遇与风险
- 电动汽车充电站新建工程项目管理实施规划
- 幼儿教师资格《保教知识与能力》历年考试真题题库(含答案及解析)
评论
0/150
提交评论