山西省大同市西园中学2021年高二数学文下学期期末试题含解析_第1页
山西省大同市西园中学2021年高二数学文下学期期末试题含解析_第2页
山西省大同市西园中学2021年高二数学文下学期期末试题含解析_第3页
山西省大同市西园中学2021年高二数学文下学期期末试题含解析_第4页
山西省大同市西园中学2021年高二数学文下学期期末试题含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省大同市西园中学2021年高二数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若直线ax+by=1与圆C:x2+y2=1相交,则点P(a,b)与圆C的位置关系是(

).A.在圆内 B.在圆上 C.在圆外 D.以上都有可能参考答案:解:直线与圆相交知圆心到直线距离,得,则到圆心距离.故选.2.定义:分子为1且分母为正整数的分数为单位分数,我们可以把1拆为若干个不同的单位分数之和.如:1=++,1=+++,1=++++,以此类推,可得:1=++++++++++++,其中a<b,a,b∈N*,设1≤x≤a,1≤y≤b,则的最小值为()A. B. C. D.参考答案:D【考点】归纳推理.【分析】根据1=++++++++++++,结合裂项相消法,可得+==,解得a,b值,可得答案.【解答】解:∵2=1×2,6=2×3,30=5×6,42=6×7,56=7×8,72=8×9,90=9×10,110=10×11,132=11×12,∵1=++++++++++++,∴+==,∴a=13,b=20,则=1+,∵1≤x≤13,1≤y≤20,∴y=1,x=13时,的最小值为,故选:D.【点评】本题考查归纳推理,考查学生的计算能力,确定a,b的值是关键.3.过点A(4,a)和B(5,b)的直线与直线y=x+m平行,则|AB|的值为(

)A.6 B.

C.2 D.不能确定参考答案:B略4.若函数的值域为,则其定义域A为

.参考答案:[-2,1)函数的值域为,令,即,求得,所以的范围为,即定义域为.

5.是的(

)

A、必要不充分条件

B、充分不必要条件

C、充要条件

D、既不充分也不必要条件参考答案:B6.若复数是纯虚数,则实数等于(

)

(A)

(B)

(C)

(D)参考答案:B7.在空间中,下列命题正确的是 (

)A.两条平行直线在同一个平面之内的射影是一对平行直线B.平行于同一直线的两个平面平行

C.垂直于同一平面的两个平面平行

D.垂直于同一平面的两条直线平行参考答案:D略8.下列式子成立的是()A. P(A|B)=P(B|A) B. 0<P(B|A)<1 C. P(AB)=P(A)?P(B|A) D. P(A∩B|A)=P(B)参考答案:C9.下列说法不正确的是

)A.函数关系是一种确定性关系B.相关关系是一种非确定性关系C.回归分析是对具有函数关系的两个变量进行统计分析的一种方法D.回归分析是对具有相关关系的两个变量进行统计分析的一种方法参考答案:C略10.执行如图所示的程序框图,则输出的值等于(

A.

B.

C.

D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.已知条件,条件,则是的__________条件.(填:充分不必要、必要不充分、充要、既不充分又不必要)

参考答案:必要不充分12.如图,椭圆C:+=1(a>2),圆O:x2+y2=a2+4,椭圆C的左、右焦点分别为F1,F2过椭圆上一点P和原点O作直线l交圆O于M,N两点,若|PF1|?|PF2|=6,则|PM|?|PN|的值为

.参考答案:6【考点】椭圆的简单性质.【专题】数形结合;转化思想;直线与圆;圆锥曲线的定义、性质与方程.【分析】设出P的坐标,把P的纵坐标用横坐标表示,然后由焦半径公式及|PF1|?|PF2|=6,求得P的横纵坐标的平方和,由对称性得到|PM|?|PN|=a2+4﹣|OM|2=a2+4﹣x02﹣y02,代入横纵坐标的平方和后整理得答案.【解答】解:设P(x0,y0),∵P在椭圆上,∴+=1,则y02=4(1﹣),∵|PF1|?|PF2|=6,∴(a+ex0)(a﹣ex0)=6,e2=,即x02=,由对称性得|PM|?|PN|=a2+4﹣|OP|2=a2+4﹣x02﹣y02=a2+4﹣﹣4+=6.故答案为:6.【点评】本题考查了椭圆的简单几何性质,考查了焦半径公式的应用,考查了计算能力,是中档题.13.将边长为1m正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S的最小值是.参考答案:

解:设剪成的小正三角形的边长为x,则:(方法一)利用导数求函数最小值.,=,当时,S′(x)<0,递减;当时,S′(x)>0,递增;故当时,S的最小值是.故当时,S的最小值是.14.已知不等式组所表示的平面区域的面积为4,则的值为

*__.参考答案:1略15.函数的定义域为

参考答案:16.

.参考答案:略17.函数的导函数为,若对于定义域内任意,,有恒成立,则称为恒均变函数.给出下列函数:①;②;③;④;⑤.其中为恒均变函数的序号是

.(写出所有满足条件的函数的序号)参考答案:①②三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,,,,,M是线段AP的中点.(1)证明:BM∥平面PCD;(2)当PA为何值时,四棱锥P-ABCD的体积最大?并求此最大值参考答案:(1)见解析(2)当PA=4时,体积最大值为16.【分析】(1)取PD中点N,易证MNCB平行四边形,进而得BM,CN平行,得证;(2)设PA=x(0),把体积表示为关于x的函数,借助不等式求得最大值.【详解】(1)取PD中点N,连接MN,CN,∵M是AP的中点,∴MN∥AD且MN,∵AD∥BC,AD=2BC,∴MN∥BC,MN=BC,∴四边形MNCB是平行四边形,∴MB∥CN,又BM平面PCD,CN?平面PCD,∴BM∥平面PCD;(2)设PA=x(0<x<4),∵PA⊥平面ABCD,∴PA⊥AB,∵,∴AB,又∵AB⊥AD,AD=2BC=4,∴VP﹣ABCD=16,当且仅当x,即x=4时取等号,故当PA=4时,四棱锥P﹣ABCD的体积最大,最大值为16.【点睛】此题考查了线面平行,线面垂直的证明,棱锥体积的求法,涉及基本不等式求最值,属于中档题.19.设数列{an}的前n项和为Sn,且关于x的方程x2﹣anx﹣an=0有一根为Sn﹣1.(1)求出S1,S2,S3;(2)猜想{Sn}的通项公式,并用数学归纳法证明.参考答案:【考点】RG:数学归纳法;8E:数列的求和.【分析】(1)由题设求出S1=,S2=.S3=.(2)由此猜想Sn=,n=1,2,3,….然后用数学归纳法证明这个结论.【解答】解:(1)当n=1时,x2﹣a1x﹣a1=0有一根为S1﹣1=a1﹣1,于是(a1﹣1)2﹣a1(a1﹣1)﹣a1=0,解得a1=.当n=2时,x2﹣a2x﹣a2=0有一根为S2﹣1=a2﹣,于是(a2﹣)2﹣a2(a2﹣)﹣a2=0,解得a2=由题设(Sn﹣1)2﹣an(Sn﹣1)﹣an=0,Sn2﹣2Sn+1﹣anSn=0.当n≥2时,an=Sn﹣Sn﹣1,代入上式得Sn﹣1Sn﹣2Sn+1=0.①得S1=a1=,S2=a1+a2=+=.由①可得S3=.(2)由(1)猜想Sn=,n=1,2,3,….下面用数学归纳法证明这个结论.(i)n=1时已知结论成立.(ii)假设n=k时结论成立,即Sk=,当n=k+1时,由①得Sk+1=,可得Sk+1=,故n=k+1时结论也成立.综上,由(i)、(ii)可知Sn=对所有正整数n都成立.20.在△ABC中,b=2,cosC=,△ABC的面积为.(Ⅰ)求a的值;(Ⅱ)求sin2A值.参考答案:【考点】余弦定理;HP:正弦定理.【分析】(Ⅰ)由条件求得sinC的值,利用△ABC的面积为求得a的值.(Ⅱ)由余弦定理求得c的值,利用正弦定理求得sinA的值,再利用二倍角的正弦公式求得sin2A值.【解答】解:(Ⅰ)△ABC中,∵b=2,,∴sinC=,∴△ABC的面积为=ab?sinC=?2?.a=1.(Ⅱ)由余弦定理可得c2=a2+b2﹣2ab?cosC=1+4﹣3=2,∴c=.再由正弦定理可得=,即=,∴sinA=.由于a不是最大边,故A为锐角,故cosA=,∴sin2A=2s

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论