下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。课堂10分钟达标1.圆x2+y2-4x+6y=0的圆心坐标是()A.(2,3) B.(-2,3)C.(-2,-3) D.(2,-3)【解析】选D.将圆的一般方程化为标准方程得(x-2)2+(y+3)2=13,故圆心为(2,-3).2.已知方程x2+y2-2x+2k+3=0表示圆,则k的取值范围是()A.(-∞,-1) B.(3,+∞)C.(-∞,-1)∪(3,+∞) D.-【解析】选A.由题意得,(-2)2+02-4(2k+3)>0,即k<-1.3.方程x2+y2+2x-4y-6=0表示的图形是()A.以(1,-2)为圆心,11为半径的圆B.以(1,2)为圆心,11为半径的圆C.以(-1,-2)为圆心,11为半径的圆D.以(-1,2)为圆心,11为半径的圆【解析】选D.将方程x2+y2+2x-4y-6=0化为(x+1)2+(y-2)2=11,因此,圆心为(-1,2),半径为11.4.方程x2+y2+2ax-by+c=0表示圆心为C(2,2),半径为2的圆,则a=____________,b=____________,c=____________.【解析】圆心为(2,2),半径为2的圆的方程为:(x-2)2+(y-2)2=4,即x2+y2-4x-4y+4=0.因此2a=-4,-b=-4,答案:-2445.设A为圆C:(x-1)2+y2=1上的动点,PA是圆的切线且|PA|=1,则P点的轨迹方程是____________.【解析】设P(x,y),则|PC|=|AC|2+|PA|2=答案:(x-1)2+y2=26.已知A(2,2),B(5,3),C(3,-1),求三角形ABC的外接圆的一般方程.【解析】设三角形ABC外接圆的方程为x2+y2+Dx+Ey+F=0,由题意得2D+2E+F+8=0,5D+3E+F+34=0,即三角形ABC的外接圆方程为x2+y2-8x-2y+12=0.7.【能力挑战题】判断方程x2+y2-4mx+2my+20m-20=0能否表示圆.若能表示圆,求出圆心和半径.【解析】方法一:由方程x2+y2-4mx+2my+20m-20=0可知D=-4m,E=2m,F=20m-20,所以D2+E2-4F=16m2+4m2-80m因此,当m=2时,它表示一个点;当m≠2时,原方程表示圆,此时,圆的圆心为(2m,-m),半径为r=12D2方法二:原方程可化为(x-2m)2+(y+m)2=5(m-2)2,因此,当m=2时,它表示
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 会议室管理制度培训
- 油气管道保护培训交流
- 陕西省榆林市第十四中学2024-2025学年高一上学期期中考试数学试题(无答案)
- 江西省宜春市上高二中2024-2025学年高二上学期11月月考数学试卷(含解析)
- 河北省衡水市武强中学2025届高三上学期期中考试数学试题 含解析
- Windows Server网络管理项目教程(Windows Server 2022)(微课版)课件 易月娥 项目1、2 部署虚拟环境和安装Windows Server 2022操作系统、活动目录的配置与管理
- 编程语言概述-介绍编程语言特点
- 醉翁亭记课件
- 甘肃省兰州市2017年中考语文真题试卷(含答案)
- 2024-2025学年八年级上学期道德与法治期中模拟试卷(统编版+含答案解析)
- 幼儿园PPT课件:数与运算2
- 园林施工组织设计
- 常德自来水公司水表管理制度
- 住宅小区室外道路及管网配套工程施工方案
- 二氧化碳气体保护焊安全技术
- 舌尖上的中国川菜完整
- 场地平整土方工程施工设计方案
- 10KV配电房改造施工方案
- 厨房工程培训方案
- EMR系统建设方案(通用)
- 口腔科门诊正畸患者就诊问卷调查表
评论
0/150
提交评论