山西省吕梁市毕家坡中学2022年高二数学文联考试题含解析_第1页
山西省吕梁市毕家坡中学2022年高二数学文联考试题含解析_第2页
山西省吕梁市毕家坡中学2022年高二数学文联考试题含解析_第3页
山西省吕梁市毕家坡中学2022年高二数学文联考试题含解析_第4页
山西省吕梁市毕家坡中学2022年高二数学文联考试题含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省吕梁市毕家坡中学2022年高二数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.甲乙两人有三个不同的学习小组A,B,C可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为()A. B. C. D.参考答案:A【考点】CB:古典概型及其概率计算公式.【分析】由题意可得总的可能性为9种,符合题意的有3种,由概率公式可得.【解答】解:总的可能性为3×3=9种,两位同学参加同一个小组的情况为3种,∴所求概率P==,故选:A.【点评】本题考查古典概型及其概率公式,属基础题.2.若函数在R上单调递增,且,则实数m的取值范围是(

)A.

B.

C.

D.参考答案:D3.已知等差数列{an}的公差为2,若a1,a3,a4成等比数列,则a2等于(

)A.-6

B.-8

C.-10

D.-12参考答案:A4.在数列中,若则该数列的通项=(

)A.

B.

C.

D.参考答案:B5.在△ABC中,,则A等于(

)A.45° B.120° C.60° D.30°参考答案:C由等式可得:,代入关于角的余弦定理:.所以.故选C.6.方程的解所在的区间为(

).

A.

B.

C.

D.参考答案:D7.设a,b∈R,集合{1,a+b,a}={0,,b},则b-a=(

)A.1

B.-1

C.2

D.-2参考答案:C8.把函数的图象向右平移个单位,再把所得图象上各点的横坐标伸长到原来的2倍,则所得图象对应的函数解析式是()A.y=sinx B.y=sin4x C. D.参考答案:A【考点】函数y=Asin(ωx+φ)的图象变换.【分析】根据三角函数图象变换的法则进行变换,并化简,可得两次变换后所得到的图象对应函数解析式.【解答】解:函数的图象向右平移个单位,得到f(x﹣)=sin[2(x﹣)+]=sin2x的图象,再将所得的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),可得f(x﹣)=sinx的图象.∴函数y=sinx的图象是函数的图象按题中的两步变换得到的函数的解析式.故选:A.【点评】本题给出三角函数图象的平移和伸缩变换,求得到的图象对应的函数解析式.着重考查了三角函数图象的变换公式等知识,属于中档题.9.设函数的定义域为R,是的极大值点,以下结论一定正确的是(

)A.

B.是的极小值点C.是的极小值点

D.是的极小值点

参考答案:D略10.已知圆C1:x2+y2+2x+8y-8=0与圆C2:x2+y2-4x-4y-2=0相交,则圆C1与圆C2的公共弦长为()A. B. C.

D.5参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.将编号1,2,3,4,5的小球放入编号1,2,3,4,5的盒子中,每个盒子放一个小球,则至多有两个小球的编号与盒子的编号相同的放法共有种.参考答案:109【考点】排列、组合及简单计数问题.【分析】利用间接法,由分步计数原理计算可得答案.【解答】解:5个球全排列为A55=120种情况3个球的编号与盒子的相同,先选出3个小球,放到对应序号的盒子里,有C53=10种情况,另外2个球,有1种不同的放法,故10种情况4个球的编号与盒子的相同,有1种不同的放法,故至多有两个小球的编号与盒子的编号相同的放法共有120﹣10﹣1=109种不同的放法,故答案为:109.12.在数列中,,且对任意大于1的正整数,点在直线上,则数列的前项和= 。参考答案:13.利用数学归纳法证明“(n+1)(n+2)…(n+n)=2n×1×3×…×(2n﹣1),n∈N*”时,从“n=k”变到“n=k+1”时,左边应增乘的因式是_________.参考答案:略14.已知函数是定义在R上的奇函数,当时,,则__________.参考答案:12【分析】由函数的奇偶性可知,代入函数解析式即可求出结果.【详解】函数是定义在上的奇函数,,则,.【点睛】本题主要考查函数的奇偶性,属于基础题型.15.z1,z2∈C,|z1|=|z2|=2,|z1+z2|=,则|z1-z2|=

参考答案:16.一个几何体由八个面围成,每个面都是正三角形,有四个顶点在同一平面内且为正方形,若该八面体的棱长为2,所有顶点都在球O上,则球O的表面积为_______.参考答案:8π【分析】根据该八面体的棱长为2,所有顶点都在球上可确定球的半径,即可求出球的表面积。【详解】根据题意该八面体的棱长为,所有顶点都在球上所以球的半径为几何体高的一半,即半径所以表面积【点睛】本题考查球体的表面积公式,解题的关键是求出半径,属于简单题。17.复数的共轭复数是(),是虚数单位,则的值是

.参考答案:7;

三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=lnx,g(x)=ax2﹣bx(a、b为常数).(1)求函数f(x)在点(1,f(1))处的切线方程;(2)当函数g(x)在x=2处取得极值﹣2.求函数g(x)的解析式;(3)当时,设h(x)=f(x)+g(x),若函数h(x)在定义域上存在单调减区间,求实数b的取值范围.参考答案:【考点】导数在最大值、最小值问题中的应用.【专题】函数的性质及应用;导数的概念及应用;导数的综合应用.【分析】(1)求出函数f(x)的导数,求得切线的斜率和切点,运用店携手方程即可得到切线方程;(2)求得g(x)的导数,由题意可得g(2)=﹣2,g′(2)=0,解方程即可得到所求解析式;(3)若函数h(x)在定义域上存在单调减区间依题存在x>0使h′(x)=(x>0).h′(x)<0(x>0)即存在x>0使x2﹣bx+1<0,运用参数分离,求得右边的最小值,即可得到所求范围.【解答】解:(1)由f(x)=lnx(x>0),可得f′(x)=(x>0),∴f(x)在点(1,f(1))处的切线方程是y﹣f(1)=f′(1)(x﹣1),即y=x﹣1,所求切线方程为y=x﹣1;

(2)∵又g(x)=ax2﹣bx可得g′(x)=2ax﹣b,且g(x)在x=2处取得极值﹣2.∴,可得解得,b=2.所求g(x)=(x∈R).

(3)∵,h′(x)=(x>0).依题存在x>0使h′(x)=(x>0).h′(x)<0(x>0)即存在x>0使x2﹣bx+1<0,∵不等式x2﹣bx+1<0等价于(*)令,∵.∴λ(x)在(0,1)上递减,在[1,+∞)上递增,故,+∞),∵存在x>0,不等式(*)成立,∴b>2.所求b∈(2,+∞).【点评】本题考查导数的运用:求切线方程和单调区间、极值和最值,同时考查函数的单调性的运用以及存在性问题,属于中档题.19.已知在等比数列{an}中,.(1)求数列{an}的通项公式;(2)设,求数列{bn}的前n项和Tn.参考答案:(1)(2)【分析】(1)求出公比后可得的通项公式.(2)利用错位相减法可求.【详解】(1)设等比数列的公比为.由,得,得,所以,解得.故数列的通项公式是.(2),则,①,②由①-②,得,,故【点睛】数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个数列连续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法.20.已知函数.

(Ⅰ)用定义证明是偶函数;(Ⅱ)用定义证明在上是减函数;

(Ⅲ)作出函数的图像,并写出函数当时的最大值与最小值.

参考答案:(Ⅰ)证明:函数的定义域为,对于任意的,都有,∴是偶函数.(Ⅱ)证明:在区间上任取,且,则有,∵,,∴即

∴,即在上是减函数.

(Ⅲ)解:最大值为,最小值为.略21.某旅游景区的观景台P位于高(山顶到山脚水平面M的垂直高度PO)为2km的山峰上,山脚下有一段位于水平线上笔直的公路AB,山坡面可近似地看作平面PAB,且△PAB为等腰三角形.山坡面与山脚所在水平面M所成的二面角为α(0°<α<90°),且sinα=.现从山脚的水平公路AB某处C0开始修建一条盘山公路,该公路的第一段、第二段、第三段…,第n﹣1段依次为C0C1,C1C2,C2C3,…,Cn﹣1Cn(如图所示),且C0C1,C1C2,C2C3,…,Cn﹣1Cn与AB所成的角均为β,其中0<β<90°,sinβ=.试问:(1)每修建盘山公路多少米,垂直高度就能升高100米.若修建盘山公路至半山腰(高度为山高的一半),在半山腰的中心Q处修建上山缆车索道站,索道PQ依山而建(与山坡面平行,离坡面高度忽略不计),问盘山公路的长度和索道的长度各是多少?(2)若修建xkm盘山公路,其造价为a万元.修建索道的造价为2a万元/km.问修建盘山公路至多高时,再修建上山索道至观景台,总造价最少.参考答案:【考点】解三角形的实际应用;函数模型的选择与应用;利用导数求闭区间上函数的最值.【分析】(1)在盘山公路上取一个点,作出该点到平面的垂线,再利用三垂线定理作出二面角棱的垂线,连接两个垂足,利用三角函数的定义可求出索道长与山高的倍数关系,得出结论;(2)设盘山公路修至山高的距离为x,建立关于x的函数,利用导数确定函数的单调性,极小值即为函数的最小值,从而得出最少总价对应的x.【解答】解:(1)在盘山公路C0C1上任选一点D,作DE⊥平面M交平面M于E,过E作EF⊥AB交AB于F,连接DF,易知DF⊥C0F.sin∠DFE=,sin∠DC0F=.∵DF=C0D,DE=DF,∴DE=C0D,所以盘山公路长度是山高的10倍,索道长是山高的倍,所以每修建盘山公路1000米,垂直高度升高100米.从山脚至半山腰,盘山公路为10km.从半山腰至山顶,索道长2.5km.(2)设盘山公路修至山高x(0<x<2)km,则盘山公路长为10xkm,索道长(2﹣x)km.设总造价为y万元,则y=a+(2﹣x)?2a=(10﹣5x)a+10a.令y′=﹣5a=0,则x=1.当x∈(0,1)时,y′<0,函数y单调递减;当x∈(1,2)时,y′>0,函数y单调递增,∴x=1,y有最小值,即修建盘山公路至山高1km时,总造价最小,最小值为15a万元.22.以下茎叶图记录了甲组3名同学寒假假期中去图书馆学习的次数和乙组4名同学寒假假期中去图书馆学习的次数.乙组记录中有一个数据模糊,无法确认,在图中以表示.(Ⅰ)如果,求乙组同学去图书馆学习次数的平均数和方差;(Ⅱ)如果,从学习次数大于8的学生中选两名同学,求选出的两名同学恰好分别在两个图书馆学习且学习的次数和大于20的概率.参考答案:解:(Ⅰ)当x=7时,由茎叶图可知,乙组同学去图书馆学习次数是:7,8,9,12,所以平均数为

……………3分方差为

……………6分(Ⅱ)记甲组3名同学为A1,A2,A3,他们去图书馆学习次数依次为9,12,11;乙组4名同学为B1,B2,B3,B4,他们去图书馆学习次数依次为9,8,9,12;从学习次数大于8的学生中人选两名学生,所有可能的结果有15个,它们是:A1A2,A1A3,A1B1,A1B3,A1B4,A2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论