下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省吕梁市城北中学2023年高一数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知在中,则角的大小为(
)A.
B.
C.或
D.
参考答案:B略2.直线
与圆交于不同的两点,为坐标原点,若,则的值为(
)
A.
B.
C.
D.
参考答案:B略3.若三条直线l1:ax+2y+6=0,l2:x+y﹣4=0,l3:2x﹣y+1=0相交于同一点,则实数a=()A.﹣12 B.﹣10 C.10 D.12参考答案:A【考点】两条直线的交点坐标.【分析】由l2:x+y﹣4=0,l3:2x﹣y+1=0,可得交点坐标为(1,3),代入直线l1:ax+2y+6=0,可得a的值.【解答】解:由l2:x+y﹣4=0,l3:2x﹣y+1=0,可得交点坐标为(1,3),代入直线l1:ax+2y+6=0,可得a+6+6=0,∴a=﹣12,故选:A.4.已知数列{an}中,前n项和为Sn,且点在直线上,则=(
)A. B. C. D.参考答案:C试题分析:点在一次函数上的图象上,,数列为等差数列,其中首项为,公差为,,数列的前项和,,.故选D.考点:1、等差数列;2、数列求和.5.若为三角形一个内角,且对任意实数,恒成立,则的取值范围为(
)A.
B.
C.
D.参考答案:C试题分析:依题意,方程的,解得或(舍去),又,故有,所以选择C.考点:三角函数与二次函数的综合.6.A={小于90的角},B={第一象限角},则A∩B等于(
)A.{锐角}
B.{小于90的角}
C.{第一象限角}
D.以上都不对参考答案:D略7.已知函数,,那么集合中元素的个数为(
▲)A.1
B.0
C.1或0
D.1或2参考答案:C略8.如图,四棱锥P﹣ABCD中,所有棱长均为2,O是底面正方形ABCD中心,E为PC中点,则直线OE与直线PD所成角为()A.30° B.60° C.45° D.90°参考答案:B【考点】异面直线及其所成的角.【分析】可连接BD,AC,OP,由已知条件便知这三直线两两垂直,从而可分别以这三直线为x,y,z轴,建立空间直角坐标系,可设棱长为2,从而可求出图形中一些点的坐标,据向量夹角的余弦公式便可求出【解答】解:根据条件知,P点在底面ABCD的射影为O,连接AC,BD,PO,则OB,OC,OP三直线两两垂直,从而分别以这三直线为x,y,z轴,建立如图所示空间直角坐标系:设棱长为2,则:O(0,0,0),C(0,,0),PP(0,0,),E(0,,A(0,﹣,0),B(,0,0),D(﹣,0,0)∴,,∴∴OE与PD所成角为60°.故选:B.9.下列图形中不一定是平面图形的是(
)A.三角形 B.平行四边形C.梯形 D.四边相等的四边形参考答案:D【分析】利用平面基本性质及推论求解.【详解】利用公理2可知:三角形、平行四边形、梯形一定是平面图形,而四边相等的四边形可能是空间四边形不一定是平面图形.故选D.【点睛】本题考查图形是否是平面图形有判断,是基础题,解题时要认真审题,注意空间思维能力的培养.10.设集合是实数集的子集,如果点满足:对任意,都存在,使得,那么称为集合的聚点.用表示整数集,则在下列集合:①,②,③,④整数集中,以为聚点的集合有(
)A.①②
B.①③
C.②③
D.②④参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.求函数f(x)=x2﹣2x+3,x∈[﹣1,2]的值域
.参考答案:[2,6]【考点】二次函数在闭区间上的最值.【专题】函数的性质及应用.【分析】首先把二次函数的一般式转化成顶点式,进一步求出对称轴方程利用定义域和对称轴方程的关系求的结果.【解答】解:函数f(x)=x2﹣2x+3=(x﹣1)2+2所以:函数为开口方向向上,对称轴为x=1的抛物线由于x∈[﹣1,2]当x=1时,f(x)min=f(1)=2当x=﹣1时,f(x)max=f(﹣1)=6函数的值域为:[2,6]故答案为:[2,6]【点评】本题考查的知识要点:二次函数一般式与顶点式的互化,对称轴和定义域的关系,函数的最值.12.若幂函数的图象过点,则
.参考答案:13.已知集合A=-1,1,3,B=3,,且BA.则实数的值是__________.参考答案:±114.已知函数f(x)的图象恒过定点P,则点P的坐标是____________.参考答案:(2,4)【分析】令x-1=1,得到x=2,把x=2代入函数求出定点的纵坐标得解.【详解】令x-1=1,得到x=2,把x=2代入函数得,所以定点P的坐标为(2,4).故答案为:(2,4)【点睛】本题主要考查对数函数的定点问题,意在考查学生对该知识的理解掌握水平,属于基础题.15.设数列的前n项的和为,且,则等于_
_参考答案:6
16.等比数列的前n项和为S,如果,则公比q的值是
参考答案:1,-0.517.正方体的表面积与其内切球表面积的比为
.参考答案:6:∏略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)一块边长为10cm的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V与x的函数关系式,并求出函数的定义域.参考答案:考点: 根据实际问题选择函数类型.专题: 计算题.分析: 设出所截等腰三角形的底边边长为xcm,在直角三角形中根据两条边长利用勾股定理做出四棱锥的高,表示出四棱锥的体积,根据实际意义写出定义域.解答: 如图,设所截等腰三角形的底边边长为xcm,在Rt△EOF中,,∴,∴依题意函数的定义域为{x|0<x<10}点评: 本题是一个函数模型的应用,这种题目解题的关键是看清题意,根据实际问题选择合适的函数模型,注意题目中写出解析式以后要标出自变量的取值范围.19.已知圆满足:圆心在直线上,且与直线相切于点,求该圆的方程参考答案:设圆心,则略20.已知顶点,角平分线方程为和,求边所在的直线方程.参考答案:点A关于直线的对称点分别是,,这两点都在直线上,所以边所在的直线方程.21.已知函数,函数为奇函数.(1)求实数的值(2)判断的单调性,并用定义证明.(3)若解不等式.参考答案:略22.已知函数.(1)若f(-1)=f(1),求a,并直接写出函数的单调增区间;(2)当a≥时,是否存在实数x,使得=一?若存在,试确定这样的实数x的个数;若不存在,请说明理由.参考答案:(1),单调增区间为,;(2)2个.【分析】(1)首先根据题中所给的函数解析式,利用,得到所满足的等量关系式,求得的值,从而得到函数的解析式,进而求得函数的单调增区间;(2)根据条件,结合函数解析式,分类讨论,分析性质,【详解】(1)由,得,解得.此时,函数所以函数的单调增区间为,.(2)显然,不满足;若,则,由,得,化简,得,无解:若,则,由,得,化简,得.令,.当时,;下面证明函数在上是单调增函数.任取,且,则由于,所以,即,故在上是单调增函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国矿产资源勘查行业商业模式创新战略制定与实施研究报告
- 新形势下塑胶玩具行业转型升级战略制定与实施研究报告
- 2025-2030年中国电视剧行业营销创新战略制定与实施研究报告
- 2025-2030年中国金属注射成型行业资本规划与股权融资战略制定与实施研究报告
- 自动喷水灭火系统试压记录表
- 比较法在图书馆学研究中的应用
- 真丝睡衣体验调查
- 生活防火知识培训课件
- 2024-2030年中国自动血液分析仪行业市场发展监测及投资潜力预测报告
- 2023-2029年中国爱情服务行业市场运行态势及投资战略规划报告
- 艺术漆培训课件
- 建德海螺二期施工组织设计
- 山东省菏泽市2023-2024学年高一上学期期末测试物理试题(解析版)
- 2024年学校后勤日用品采购合同范本2篇
- 中建中建机电工程联动调试实施方案范本
- 新《安全生产法》安全培训
- 山东省济南市2023-2024学年高一上学期1月期末考试 物理 含答案
- 中华人民共和国安全生产法知识培训
- 物业品质提升方案课件
- 《ROHS知识培训》课件
- 服装行业仓库管理流程
评论
0/150
提交评论