山西省临汾市解放路中学高二数学文联考试卷含解析_第1页
山西省临汾市解放路中学高二数学文联考试卷含解析_第2页
山西省临汾市解放路中学高二数学文联考试卷含解析_第3页
山西省临汾市解放路中学高二数学文联考试卷含解析_第4页
山西省临汾市解放路中学高二数学文联考试卷含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省临汾市解放路中学高二数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.总体由编号为00,01,02,…48,49的50个个体组成.利用下面的随机数表选取8个个体,选取方法是从随机数表第6行的第9列和第10列数字开始由左到右依次选取两个数字,则选出来的第8个个体的编号为()附:第6行至第9行的随机数表:A.16 B.19 C.20 D.38参考答案:B【考点】简单随机抽样.【分析】从随机数表第6行的第9列和第10列数字开始由左到右依次选取两个数字,符合条件依次为:33,16,20,38,49,32,11,19,故可得结论.【解答】解:从随机数表第6行的第9列和第10列数字开始由左到右依次选取两个数字,符合条件依次为:33,16,20,38,49,32,11,19故第8个数为19.故选:B.【点评】本题主要考查简单随机抽样.在随机数表中每个数出现在每个位置的概率是一样的,所以每个数被抽到的概率是一样的.2.如图中阴影部分的面积为

A.2

B.9-2C.

D.参考答案:C略3.已知椭圆C1、C2的离心率分别为e1、e2,若椭圆C1比C2更圆,则e1与e2的大小关系正确的是()(A)e1<e2

(B)e1=e2

(C)e1>e2

(D)e1、e2大小不确定参考答案:A略4.已知双曲线﹣=1(a>0,b>0)的右顶点为A,左焦点为F,过F作垂直于x轴的直线与双曲线相交于B、C两点,若△ABC为锐角三角形,则双曲线的离心率的取值范围为()A.(1,2) B.(1,) C.(,2) D.(2,+∞)参考答案:A【考点】双曲线的简单性质.【分析】根据题意,求出AF,|BC若△ABC为锐角三角形,只要∠FAB为锐角,即|BC|<AF;从而可得结论.【解答】解:双曲线﹣=1(a>0,b>0)的右顶点为A,左焦点为F,AF=a+c,|BC|=过F作垂直于x轴的直线与双曲线相交于B、C两点,若△ABC为锐角三角形,只要∠FAB为锐角,即|BC|<AF;所以有<a+c,即c2﹣a2<a2+ac,即:e2﹣e﹣2<0解出e∈(1,2),故选:A.【点评】本题考查双曲线的离心率和锐角三角形的判断,在解题过程中要注意隐含条件的挖掘.5.下列四条直线,倾斜角最大的是()A.y=﹣x+1 B.y=x+1 C.y=2x+1 D.x=1参考答案:A【考点】直线的倾斜角.【分析】由直线方程求出直线的斜率,再由直线的斜率得出直线的倾斜角.【解答】解:直线方程y=﹣x+1的斜率为﹣1,倾斜角为135°,直线方程y=x+1的斜率为1,倾斜角为45°,直线方程y=2x+1的斜率为2,倾斜角为α(60°<α<90°),直线方程x=1的斜率不存在,倾斜角为90°.所以A中直线的倾斜角最大.故选:A.6.设函数的最大值为3,则f(x)的图象的一条对称轴的方程是

)A、

B、

C、

D、

参考答案:A略7.在△ABC中,a=+1,

b=-1,

c=,则△ABC中最大角的度数为

)A.600

B.900

C.1200

D.1500参考答案:C8.某校有40个班,每班55人,每班选派3人参加“学代会”,这个问题中样本容量是()A.40 B.50 C.120 D.155参考答案:C【考点】收集数据的方法.【分析】由题意,第班抽三人,四十个班共抽取120人,由此知样本容量即为120,选出正确选项即可【解答】解:由题意,是一个分层抽样,每个班中抽三人,总共是40个班,故共抽取120人组成样本所以,样本容量是120人.故选C9.下列四个命题中真命题是①“若xy=1,则x、y互为倒数”的逆命题

②“面积相等的三角形全等”的否命题

③“若m≤1,则方程x2-2x+m=0有实根”的逆否命题

④“若A∩B=B,则AB”的逆否命题(

)A.①②

B.②③

C.①②③

D.③④参考答案:C10.已知在正项等比数列{an}中,a1=1,a2a4=16,则|a1-12|+|a2-12|+…+|a8-12|=(

).A、224

B、225

C、226

D、256参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.已知倾斜角为α的直线l与直线2x+y-3=0垂直,则

.参考答案:12.不等式x(x﹣1)>0的解集是.参考答案:(﹣∞,0)∪(1,+∞)【考点】一元二次不等式的解法.【分析】根据一元二次不等式的解法,进行求解.【解答】解:方程x(x﹣1)=0,解得其根为x=0或x=1,∵x(x﹣1)>0,解得x>1或x<0,∴该不等式的解集是(﹣∞,0)∪(1,+∞).故答案为:(﹣∞,0)∪(1,+∞).13.命题p:?∈R,,则命题p的否定为__________________.参考答案:?∈R,略14.设等差数列的前项和为,则,,,成等差数列.类比以上结论有:设等比数列的前项积为,则,

,成等比数列.参考答案:.15.由命题“?x∈R,x2+2x+m≤0”是假命题,求得实数m的取值范围是(a,+∞),则实数a=

.参考答案:1【考点】命题的真假判断与应用;四种命题的真假关系.【专题】转化思想;简易逻辑.【分析】存在x∈R,使x2+2x+m≤0”是假命题,其否命题为真命题,即是说“?x∈R,都有x2+2x+m>0”,根据一元二次不等式解的讨论,可知△=4﹣4m<0,所以m>1,则a=1.【解答】解:存在x∈R,使x2+2x+m≤0”是假命题,∴其否命题为真命题,即是说“?x∈R,都有x2+2x+m>0”,∴△=4﹣4m<0,∴m>1,m的取值范围为(1,+∞).则a=1【点评】考察了四种命题间的关系和二次函数的性质,属于常规题型.16.观察下列等式:

12=1,

12—22=—3,

12—22+32=6,

12—22+32—42=-10,

…由以上等式推测到一个一般的结论:对于,12—22+32—42+…+(—1)n+1n2=

。参考答案:17.正四面体ABCD的棱长为1,E在BC上,F在AD上,BE=2EC,DF=2FA,则EF的长度是

。参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)用分析法证明:参考答案:欲证需证需证3+4+即证2需证12>10

因为12>10显然成立所以原不等式成立略19.在平面直角坐标系xOy中,已知直线y=x﹣1被圆心在原点O的圆截得的弦长为.(Ⅰ)求圆C的方程;(Ⅱ)若点A在椭圆2x2+y2=4上,点B在直线x=2上,且OA⊥OB,试判断直线AB与圆C的位置关系,并证明你的结论.参考答案:【考点】直线与圆相交的性质;直线与圆的位置关系.【分析】(Ⅰ)设出圆O的半径为r,利用圆心到直线的距离d与弦长的一半组成直角三角形,利用勾股定理求出半径,即可写出圆的方程.(Ⅱ)设出点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0,由OA⊥OB,用坐标表示后把t用含有A点的坐标表示,然后分A,B的横坐标相等和不相等写出直线AB的方程,然后由圆x2+y2=2的圆心到AB的距离和圆的半径相等说明直线AB与圆x2+y2=2相切.【解答】解:(Ⅰ)设圆O的半径为r,则圆心O到直线y=x﹣1的距离为d=,又直线被圆O所截得的弦长为,所以r2=+=2,所以圆O的方程为x2+y2=2.(Ⅱ)直线AB与圆x2+y2=2相切.证明如下:设点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0.∵OA⊥OB,∴tx0+2y0=0,解得t=﹣.当x0=t时,y0=﹣,代入椭圆C的方程,得t=±.故直线AB的方程为x=±,圆心O到直线AB的距离d=.此时直线AB与圆x2+y2=2相切.当x0≠t时,直线AB的方程为y﹣2=(x﹣t),即(y0﹣2)x﹣(x0﹣t)y+2x0﹣ty0=0.圆心O到直线AB的距离d===.此时直线AB与圆x2+y2=2相切.20.已知椭圆C:(a>b>0)的离心率,原点到过点A(﹣a,0),B(0,b)的直线的距离是.(1)求椭圆C的方程;(2)设动直线l与两定直线l1:x﹣2y=0和l2:x+2y=0分别交于P,Q两点.若直线l总与椭圆C有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.参考答案:【考点】直线与圆锥曲线的关系;椭圆的标准方程.【专题】方程思想;分类法;直线与圆;圆锥曲线的定义、性质与方程.【分析】(1)运用椭圆的离心率公式和点到直线的距离公式,解方程可得a,b,进而得到椭圆方程;(2)讨论直线l的斜率是否存在,当直线l的斜率存在时,设直线,联立直线方程和椭圆方程,运用判别式为0,再联立直线方程组,求得P,Q的坐标,求得PQ的长,求出OPQ的面积,化简整理,可得最小值.【解答】解:(1)因为,a2﹣b2=c2,所以a=2b.因为原点到直线AB:的距离,解得a=4,b=2.故所求椭圆C的方程为+=1.(2)当直线l的斜率不存在时,直线l为x=4或x=﹣4,都有.当直线l的斜率存在时,设直线,由消去y,可得(1+4k2)x2+8kmx+4m2﹣16=0.因为直线l总与椭圆C有且只有一个公共点,所以△=64k2m2﹣4(1+4k2)(4m2﹣16)=0,即m2=16k2+4.①又由可得;同理可得.由原点O到直线PQ的距离为和,可得.②将①代入②得,.当时,;当时,.因,则0<1﹣4k2≤1,,所以,当且仅当k=0时取等号.所以当k=0时,S△OPQ的最小值为8.综上可知,当直线l与椭圆C在四个顶点处相切时,△OPQ的面积取得最小值8.【点评】本题考查椭圆的方程的求法,注意运用椭圆的性质:离心率公式和点到直线的距离,考查三角形的面积的最小值,注意讨论直线的斜率是否存在,注意联立直线方程和椭圆方程,运用韦达定理和弦长公式,属于中档题.21.从某居民区随机抽取10个家庭,获得第个家庭的月收入(单位:千元)与月储蓄(单位:千元)的数据资料,算得,,,.(Ⅰ)求家庭的月储蓄对月收入的线性回归方程;(Ⅱ)判断变量与之间是正相关还是负相关;(Ⅲ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程中,,,其中,为样本平均值,线性回归方程也可写为.参考答案:(Ⅰ)由题意知,又由此得故所求回归方程为.(Ⅱ)由于变量的值随的值增加而增加,故量与之间是正相关.(Ⅲ)将代入回归方程可以预测该家庭的月储蓄为(千元).略22.已知函数.(Ⅰ)若成立,求的取值范围;(Ⅱ)若定义在上奇函数满足,且当时,,求在上的解析式,并写出在上的单调区间(不必证明);(Ⅲ)对于(Ⅱ)中的,若关于的不等式在上恒成立,求实数的取值范围.参考答案:【知识点】对数不等式的解法、函数解析式的求法、奇函数、不等式恒成立问题【答案解析】(Ⅰ);(Ⅱ)

在和上递减;在上递

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论