下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省临汾市翼城第二中学2021-2022学年高二数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知,,若,则λ与μ的值分别为()A.﹣5,﹣2 B.5,2 C. D.参考答案:D【考点】平面向量共线(平行)的坐标表示.【分析】直接利用向量平行的坐标表示建立方程,解方程求出λ与μ的值.【解答】解:因为,,又,所以(λ+1)×2=2λ×6,解得λ=.并且2λ(2μ﹣1)=0,解得μ=,λ与μ的值分别为:.故选D.【点评】本题考查向量的平行条件的应用,考查计算能力.2.已知抛物线上一动点到其准线与到点M(0,4)的距离之和的最小值为,F是抛物线的焦点,O是坐标原点,则的内切圆半径为A.
B.
C.
D.参考答案:D通过图像将到准线的距离转化为到焦点的距离,到其准线与到点M(0,4)的距离之和的最小值,也即为最小,当三点共线时取最小值。所以,解得,由内切圆的面积公式,解得。故选D。3.与终边相同的角是(
)A.
B.
C.
D.参考答案:D4.当(i为虚数单位)时,的值为(
)A.1 B.-1 C.i D.-i参考答案:D试题分析:根据题意,当z=-时,z100+z50+1=的值等于-i,故选D.考点:导数研究函数的单调性点评:本题考查利用导数研究函数的单调性,易错点在于忽视函数的定义域,属于中档题
5.已知圆O:x2+y2=16和点M(1,2),过点M的圆的两条弦AC,BD互相垂直,则四边形ABCD面积的最大值()A.4 B. C.23 D.25参考答案:B【考点】直线与圆的位置关系.【分析】连接OA、OD作OE⊥ACOF⊥BD垂足分别为E、F,推导出四边形OEPF为矩形,由OA=OC=4,OM=3,求出AC2+BD2=92,由任意对角线互相垂直四边形的面积等于对角线乘积的,求出当AC=BD时,四边形ABCD的面积取最大值.【解答】解:如图,连接OA、OD作OE⊥ACOF⊥BD垂足分别为E、F∵AC⊥BD∴四边形OEPF为矩形已知OA=OC=4,OM=3,设OE为x,则OF=EP==,∴AC=2AE=2=2,BD=2DF=2=2,∴AC2+BD2=92,由此可知AC与BD两线段的平方和为定值,又∵任意对角线互相垂直四边形的面积等于对角线乘积的,当AC=BD=时四边形ABCD的面积最大值=23.故选:B.6.若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()A. B. C. D.参考答案:B【考点】CF:几何概型.【分析】利用几何槪型的概率公式,求出对应的图形的面积,利用面积比即可得到结论.【解答】解:∵AB=2,BC=1,∴长方体的ABCD的面积S=1×2=2,圆的半径r=1,半圆的面积S=,则由几何槪型的概率公式可得质点落在以AB为直径的半圆内的概率是,故选:B.7.一个圆锥的正视图是边长为4的等边三角形,则这个圆锥的表面积为(
)A.4π
B.8π
C.12π
D.16π参考答案:C略8.椭圆上一动点P,圆E:(x﹣1)2+y2=1,过圆心E任意作一条直线与圆E交于A,B两点,圆F:(x+1)2+y2=1,过圆心F任意作一条直线与圆F交于C,D两点,则最小值(
)A.4 B.6 C.8 D.9参考答案:B考点:椭圆的简单性质.专题:数形结合;转化思想;圆锥曲线的定义、性质与方程.分析:如图所示,由于=,=,=,代入可得=﹣1,同理可得:=﹣1.由于=4,利用基本不等式的性质即可得出.解答:解:如图所示,∵=,=,=,∴=()?()=++=﹣1,同理可得:=﹣1.∵=4,∴+=﹣1+﹣1=+﹣2≥﹣2=6.当且仅当==2时取等号.∴+最小值是6.故选:B.点评:本题考查了椭圆的定义标准方程及其性质、向量的三角形法则、基本不等式的性质,考查了推理能力与计算能力,属于中档题9.下列有关命题:①设m∈R,命题“若a>b,则am2>bm2”的逆否命题为假命题;②命题p:?α,β∈R,tan(α+β)=tanα+tanβ的否定¬p:?α,β∈R,tan(α+β)≠tanα+tanβ;③设a,b为空间任意两条直线,则“a∥b”是“a与b没有公共点”的充要条件.其中正确的是()A.①② B.②③ C.①③ D.①②③参考答案:A【考点】2K:命题的真假判断与应用.【分析】判断原命题的真假,根据互为逆否的两个命题真假性相同,可判断①;写出原命题的否定,可判断②;根据充要条件的定义,可判断③【解答】解:①设m∈R,命题“若a>b,则am2>bm2”在m=0时不成立,故为假命题,故它的逆否命题为假命题;即①正确;②命题p:?α,β∈R,tan(α+β)=tanα+tanβ的否定¬p:?α,β∈R,tan(α+β)≠tanα+tanβ,正确;③设a,b为空间任意两条直线,则“a∥b”是“a与b没有公共点”的充分不必要条件,即③错误.故选:A.10.如果,那么(
)A.
B.C.
D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.已知直线,给出下列四个命题:
(1)直线的倾斜角是;
(2)无论如何变化,直线不过原点;
(3)无论如何变化,直线总和一个定圆相切;
(4)当直线和两坐标轴都相交时,它和坐标轴围成的三角形的面积不小于1;其中正确命题的序号是
.(把你认为正确命题的序号全填上)参考答案:2,3,4略12.命题“”的否定是________________.参考答案:略13.若过点P(5,﹣2)的双曲线的两条渐近线方程为x﹣2y=0和x+2y=0,则该双曲线的实轴长为
.参考答案:6【考点】双曲线的简单性质.【专题】计算题;方程思想;综合法;圆锥曲线的定义、性质与方程.【分析】利用共渐近线双曲线系方程设为x2﹣4y2=λ(λ≠0),求得λ,再求2a.【解答】解:设所求的双曲线方程为x2﹣4y2=λ(λ≠0),将P(5,﹣2)代入,得λ=9,∴x2﹣4y2=9,∴a=3,实轴长2a=6,故答案为:6.【点评】利用共渐近线双曲线系方程可为解题避免分类讨论.14.已知为正实数,且,则的最小值是__________.参考答案:略15.若点M在直线a上,a在平面α上,则M,a,α间的关系可用集合语言表示为__________.参考答案:16.已知函数满足:,,则-----__________。参考答案:16略17.若x,y∈R+且2x+8y﹣xy=0,则x+y的最小值为.参考答案:18考点:基本不等式.专题:计算题;转化思想.分析:等式2x+8y﹣xy=0变形为+=1,则x+y=(x+y)(+),根据基本不等式即可得到答案.解答:解:由题意2x+8y=xy即:+=1.∵x,y∈R+,利用基本不等式:则x+y=(x+y)(+)=+10≥8+10=18.当且仅当,即x=2y,∵+=1,∴x=12,y=6时等号成立,此时x+y的最小值为18.故答案为18.点评:本题以等式为载体,主要考查基本不等式的应用问题,题中将等式变形,从而利用1的代换是解题的关键,有一定的技巧性,属于基础题目.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知(1)当时,求的极大值点;(2)设函数的图象与函数的图象交于、两点,过线段的中点做轴的垂线分别交、于点、,证明:在点处的切线与在点处的切线不平行.参考答案:(1),令h’(x)=0,则4x2+2x-1=0,解出x1=,
x2=,所以的极大值点为.(2)设P、Q的坐标分别是.则M、N的横坐标.∴C1在点M处的切线斜率为,C2在点N处的切线斜率为假设C1在点M处的切线与C2在点N处的切线平行,则,即则设t=,
则…………①令,则,∴r(t)在[1,+∞)上单调递增,故r(t)>r(1)=0.∴,这与①矛盾,假设不成立,故C1在点M处的切线与C2在点N处的切线不平行.19.(本小题满分12分)已知椭圆的长轴长是短轴长的2倍且经过点A(2,0),求椭圆的标准方程。参考答案:
解:(1)若椭圆的焦点在x轴上,设方程为+=1(a>b>0),∵椭圆过点A(2,0),∴=1,a=2,∵2a=2·2b,∴b=1,∴方程为+y2=1.若椭圆的焦点在y轴上,设椭圆方程为+=1(a>b>0),∵椭圆过点A(2,0),∴+=1,∴b=2,2a=2·2b,∴a=4,∴方程为+=1.综上所述,椭圆方程为+y2=1或+=1.
20.小题满分15分)过轴上动点引抛物线的两条切线、,、为切点,设切线,的斜率分别为和.
(1)求证:;(2)试问:直线是否经过定点?若是,求出该定点坐标;若不是,请说明理由.
(3)设的面积为,当最小时,求的值.参考答案:解:(Ⅰ)设过与抛物线的相切的直线的斜率是,则该切线的方程为:,由得,则都是方程的解,故。……………5分
(Ⅱ)简解:由(1)知:设,故
①设的方程:由,
②
③把②③代入①得,直线的方程是,则直线过定点.……………10分
法1:设,故切线的方程是:,切线的方程是:,又由于点在上,则,,,则直线的方程是,则直线过定点.
法2:设,ks5*u
所以,直线:,
(3)要使最小,就是使得到直线的距离最小,而到直线的距离,当且仅当即时取等号.设,由得,则……………1521.已知△ABC的内角A、B、C所对的边分别为a、b、c,且sinB(tanA+tanC)=tanAtanC.(1)求证:b2=ac;(2)若a=2c=2,求△ABC的面积.参考答案:【考点】余弦定理;正弦定理.【分析】(1)根据三角恒等变换化简sinB(tanA+tanC)=tanAtanC,再利用正弦定理可得b2=ac;(2)根据题意求出a、c和b的值,利用余弦定理求出cosB,再根据同角的三角函数关系求出sinB,计算△ABC的面积即可.【解答】解:(1)证明:在△ABC中,由于sinB(tanA+tanC)=tanAtanC,所以sinB(+)=?,因此sinB(sinAcosC+cosAsinC)=sinAsinC;又A+B+C=π,所以sin(A+C)=sinB,因此sin2B=sinAsinC,由正弦定理可得b2=ac;﹣﹣﹣﹣﹣(2)因为a=2c=2,所以a=2,c=1,又b2=ac,所以b=;由余弦定理得cosB==,又因为0<B<π,所以sinB=;所以△ABC的面积为S=acsinB=.﹣﹣﹣﹣﹣22.在直角坐标系xOy中,直线l的参数方程为(t为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=4cosθ.(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设圆C与直线l交于点A、B,若点P的坐标为(2,1),求|PA|+|PB|.参考答案:【考点】QJ:直线的参数方程;Q4:简单曲线的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- JJF(陕) 027-2020 医用电针治疗仪校准规范
- 中医美容实yong技术(西安海棠职业学院)知到智慧树答案
- 内部会计控制规范课件
- 行业主管工作总结总结分析安排计划
- 《试验室管理》课件
- 3D打印机相关行业投资规划报告
- DH(DHP)离心压缩机行业相关投资计划提议
- 《液压与气动》课件 2气动辅助元件
- 质量管理主管的质量提升计划
- 力学压轴题的类型及解法指导课件
- 学校综合楼建设项目可行性研究报告
- 2023年工装夹具设计工程师年终总结及下一年计划
- 流行病学厦门大学中国大学mooc课后章节答案期末考试题库2023年
- 小学总复习-非连续性文本
- 功能医学与健康管理课件
- 教师一对一廉洁谈话记录
- 酒类文化传承与品牌建设策略研究
- 烧烤行业面临的机遇与挑战
- 课本剧西门豹治邺剧本
- 下肢静脉血栓形成全解课件
- 交通灯PLC课程设计
评论
0/150
提交评论