下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省临汾市曲沃高级职业中学高一数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图,在梯形ABCD中,BC=2AD,DE=EC,设,则A.
B.
C.
D.参考答案:D2.下列函数中是偶函数的是
(
)A.
B.
C.
D.参考答案:A略3.下列选项中,错误的是()A.“度”与“弧度”是度量的两种不同的度量单位B.一度的角是周角的,一弧度的角是周角的C.根据弧度的定义,一定等于弧度D.不论是用角度制还是弧度制度量角,它们与圆的半径长短有关参考答案:D4.下列四个函数中,在整个定义域内单调递减的是(
)A.
B.
C.
D.参考答案:C对于A:因为>1,所以在整个定义域内单调递增;故A错;对于B:在上递减,如,时,有则不能说整个定义域内单调递减,故B错;对于C:在整个定义域内单调递减,故C对;对于D:在递减,在递增,故D错;故选C
5.已知,且,则的值为(
)A.
B.
C.
D.×2015参考答案:B6.下列说法正确的是(
)A.不共面的四点中,其中任意三点不共线B.若点A,B,C,D共面,点A,B,C,E共面,则A,B,C,D,E共面C.若直线a,b共面,直线a,c共面,则直线b,c共面D.依次首尾相接的四条线段必共面参考答案:A【分析】利用反证法可知正确;直线与直线异面时,不共面,排除;中可为异面直线,排除;中四条线段可构成空间四边形,排除.【详解】选项:若任意三点共线,则由该直线与第四个点可构成一个平面,则与四点不共面矛盾,则任意三点不共线,正确;选项:若三点共线,直线与直线异面,此时不共面,错误;选项:共面,共面,此时可为异面直线,错误;选项:依次首尾相接的四条线段可构成空间四边形,错误.本题正确选项:A【点睛】本题考查空间中点与直线、直线与直线位置关系的判断,属于基础题.7.设A={a,b},集合B={a+1,5},若A∩B={2},则A∪B=(
)A、{1,2}
B、{1,5}
C、{2,5}
D、{1,2,5}参考答案:D8.若两个函数的图象经过若干次平移后能够重合,则称这两个函数为“同形”函数.给出四个函数:,,,.则“同形”函数是(
)ks5uA.与
B.与
C.与
D.与参考答案:D9.函数的值域为
(
)A、
B、
C、
D、参考答案:C略10.若定义域为R的函数f(x)满足:对于任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)﹣2016,且x>0时,有f(x)>2016,f(x)在区间[﹣2016,2016]的最大值,最小值分别为M、N,则M+N的值为()A.2015 B.2016 C.4030 D.4032参考答案:D【考点】函数的最值及其几何意义.【分析】根据:对于任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)﹣2016,得出f(0)=2016,f(x)+f(﹣x)=4032,x∈[﹣2016,2016]恒成立,可判断f(x)的图象关于(0,2016)对称,运用函数图象的特殊性可以判断出答案.【解答】解:∵对于任意的x1,x2∈R,x1<x2,x2﹣x1>0,都有f(x1+x2)=f(x1)+f(x2)﹣2016,∴f(x2﹣x1)>2016,f(x2)﹣f(x1)=f(x2﹣x1+x1)﹣f(x1)=f(x2﹣x1)+f(x1)﹣f(x1)﹣2016=f(x2﹣x1)﹣2016>0,即f(x1)<f(x2)∴f(x)在R上单调递增,∴M=f,∵对于任意的x1,x2∈[﹣2016,2016],∴f(0)=2f(0)﹣2016,即f(0)=2016,∴f(x﹣x)=f(x)+f(﹣x)﹣20126即f(x)+f(﹣x)﹣2016=f(0),f(x)+f(﹣x)=4032∴M+N的值为4032,故选:D.二、填空题:本大题共7小题,每小题4分,共28分11.已知函数在R上单调,则实数a的取值范围是.参考答案:[1,2]【考点】分段函数的应用.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】由于函数f(x在定义域R上单调,可得函数在R上单调递减,故有,即可求出实数a的取值范围.【解答】解:由于函数f(x在定义域R上单调,可得函数在R上单调递减,故有,解得1≤a≤2,即[1,2].故答案为:[1,2].【点评】本题考查分段函数的单调性,考查学生分析解决问题的能力,正确转化是关键.12.已知集合A={x∈N|x2-2x-4<0},则A中所有元素之和为
参考答案:613.函数y=的定义域是____________.参考答案:略14.过点(1,2)且在两坐标轴上的截距相等的直线的方程为
参考答案:15.函数f(x)=的单调递减区间是
参考答案:[,2]
16.若变量x,y满足约束条件,则的最大值为___________.参考答案:2【分析】画出不等式组对应的可行域,平移动直线可得的最大值.【详解】不等式组对应的可行域如图所示:平移动直线至时,有最大值,又得,故,故填.【点睛】二元一次不等式组条件下的二元函数的最值问题,常通过线性规划来求最值,求最值时往往要考二元函数的几何意义,比如表示动直线的横截距的三倍,而则表示动点与的连线的斜率.17.某公司调查了商品A的广告投入费用x(万元)与销售利润y(万元)的统计数据,如下表:广告费用x(万元)
2
3
5
6销售利润y(万元)
5
7
9
11
由表中的数据得线性回归方程为,则当时,销售利润y的估值为___.(其中:)参考答案:12.2【分析】先求出,的平均数,再由题中所给公式计算出和,进而得出线性回归方程,将代入,即可求出结果.【详解】由题中数据可得:,,所以,所以,故回归直线方程为,所以当时,【点睛】本题主要考查线性回归方程,需要考生掌握住最小二乘法求与,属于基础题型.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,用一块钢锭浇铸一个厚度均匀,且全面积为2平方米的正四棱锥形有盖容器,设容器的高为h米,盖子边长为a米.⑴求a关于h的函数解析式;⑵设容器的容积为V立方米,则当h为何值时,V最大?求出V的最大值.(不计容器的厚度)
参考答案:解:⑴设h/为正四棱锥的斜高,由已知得解得a=(h>0).⑵V=ha2=(h>0),易得V=,因为h+≥2=2,所以V≤,等号当且仅当h=,即h=1时取得.故当h=1米时,V有最大值,V的最大值为立方米略19.已知函数f(x)=sin2x-cos2x-,x∈R.(1)求函数f(x)的最小值和最小正周期;(2)设△ABC的内角A、B、C的对边分别为a、b、c,且c=,f(C)=0,若sinB=2sinA,求a,b的值.参考答案:(1)-2
π
(2)a=1且b=2(2)f(C)=sin(2C-)-1=0,则sin(2C-)=1.∵0<C<π,∴-<2C-<π,因此2C-=,∴C=.∵sinB=2sinA及正弦定理,得b=2a.①由余弦定理,得c2=a2+b2-2abcos,且c=,∴a2+b2-ab=3,②由①②联立,得a=1且b=2.20.如图,在四棱锥P﹣ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(1)求证:PO⊥平面ABCD;(2)求异面直线PB与CD所成角的余弦值;(3)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出的值;若不存在,请说明理由.参考答案:【考点】MK:点、线、面间的距离计算;LM:异面直线及其所成的角;LW:直线与平面垂直的判定.【分析】(1)根据线面垂直的判定定理可知,只需证直线PO垂直平面ABCD中的两条相交直线垂直即可;(2)先通过平移将两条异面直线平移到同一个起点B,得到的锐角或直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角即可;(3)利用Vp﹣DQC=VQ﹣PCD,即可得出结论.【解答】(1)证明:在△PAD卡中PA=PD,O为AD中点,所以PO⊥AD.又侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO?平面PAD,所以PO⊥平面ABCD.(2)解:连接BO,在直角梯形ABCD中,BC∥AD,AD=2AB=2BC,有OD∥BC且OD=BC,所以四边形OBCD是平行四边形,所以OB∥DC.由(1)知PO⊥OB,∠PBO为锐角,所以∠PBO是异面直线PB与CD所成的角.因为AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,所以OB=,在Rt△POA中,因为AP=,AO=1,所以OP=1,在Rt△PBO中,PB=,所以cos∠PBO=,所以异面直线PB与CD所成的角的余弦值为.(3)解:假设存在点Q,使得它到平面PCD的距离为.设QD=x,则S△DQC=x,由(2)得CD=OB=,在Rt△POC中,PC=,所以PC=CD=DP,S△PCD==,由Vp﹣DQC=VQ﹣PCD,得x=,所以存在点Q满足题意,此时=.21.在三棱锥S﹣ABC中,三条棱SA、SB、SC两两互相垂直,且SA=SB=SC=a,M是边BC的中点.(1)求异面直线SM与AC所成的角的大小;(2)设SA与平面ABC所成的角为α,二面角S﹣BC﹣A的大小为β,分别求cosα,cosβ的值.参考答案:【考点】二面角的平面角及求法;异面直线及其所成的角.【分析】(1)取AB的中点D,连结SD,MD,说明三角形SDM是等边三角形,推出异面直线SM与AC成60°角.(2)过S作SO⊥AM,垂足为O,说明SA与平面ABC所成的角α=∠SAM,通过求解三角形即可,二面角S﹣BC﹣A的大小β=∠SMA,通过三角形求解即可.【解答】解:(1)取AB的中点D,连结SD,MD,显然所以三角形SDM是等边三角形…所以异面直线SM与AC成60°角…(2)过S作SO⊥AM,垂足为O,因为SM⊥BC,AM⊥BC所以BC⊥平面SAM,所以BC⊥SO所以SO⊥平面ABC则SA与平面ABC所成的角α=∠SAM…因为SA⊥SB,SA⊥SC所以SA⊥平面SBC,所以SA⊥SM,…因为SM⊥BC,AM⊥BC则二面角S﹣BC﹣A的大小β=∠SMA…,…22.(本题12分)一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.(1)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于7的概率;(2)若第一次随机抽取1张卡片,放回后再随机抽取1张卡片,求两次抽取的卡片中至少一次抽到数字2的概率.参考答案:(1)设A表示事件“抽取3张卡片上的数字之和大于或等于7”,任取三张卡片,三张卡片上的数字全部可能的结果是(1、2、3),(1、2、4),(1、3、4),(2、3、4),共4种,数字之和大于或等于7:(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 体系合同评审过程的衡量目标
- 2025年锦州货运从业资格证考试模拟
- 2025年北京货运从业资格证试题答题器
- 电力设备公司员工停薪留职
- 建筑防猫害安全施工协议
- 图书馆消毒操作规程
- 汽车制造空气净化合同
- 厂房改造项目租赁承包合同
- 酒店走廊绿植装饰合作协议
- 政府信息资产整合办法
- 期末模拟卷01(全国适用)-【中职专用】高二语文上学期职业模块期末模拟卷(解析版)
- 漏洞修复策略优化
- 手术安全培训
- 司机聘用协议书与司机聘用合同
- 汽车吊安全教育培训
- 浙江省宁波市慈溪市2023-2024学年高二上学期期末考试 物理 含解析
- 2024七年级数学上册第4章相交线与平等线项目学习2包装中的智慧习题课件新版华东师大版
- 2024湖南田汉大剧院事业单位招聘若干人易考易错模拟试题(共500题)试卷后附参考答案
- 码头安全生产知识培训
- 汉语阅读教程第一册第十二课
- 老年科护理查房护理病历临床病案
评论
0/150
提交评论