山东省青岛市第三十三中学高一数学文月考试题含解析_第1页
山东省青岛市第三十三中学高一数学文月考试题含解析_第2页
山东省青岛市第三十三中学高一数学文月考试题含解析_第3页
山东省青岛市第三十三中学高一数学文月考试题含解析_第4页
山东省青岛市第三十三中学高一数学文月考试题含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省青岛市第三十三中学高一数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若是互不相同的直线,是平面,则下列命题中正确的是(

)A.若则

B.若则C.若则

D.若则参考答案:C2.已知且,则的值为

A.

5

B.

C.

D.

225参考答案:B3.在抛掷一颗骰子的试验中,事件A表示“不大于3的点数出现”,事件B表示“小于5的点数出现”,则事件A∪(表示B的对立事件)发生的概率为(

)A.

B.

C.

D.参考答案:C4.如果集合A=中只有一个元素,则的值是(

)A.0

B.0或1

C.1

D.不能确定

参考答案:B略5.已知∠AOB=lrad,点Al,A2,…在OA上,B1,B2,…在OB上,其中的每一个实线段和虚线段氏均为1个单位,一个动点M从O点出发,沿着实线段和以O为圆心的圆弧匀速运动,速度为l单位/秒,则质点M到达A10点处所需要的时间为(

)秒。

A.62

B.63

C.65

D.66

参考答案:C6.若函数,则的值是(

)A.

B. C.

D.4参考答案:C7.一图形的投影是一条线段,这个图形不可能是()A.线段 B.直线 C.圆 D.梯形参考答案:B【考点】LA:平行投影及平行投影作图法.【分析】本题考查投影的概念,由于图形的投影是一个线段,根据平行投影与中心投影的规则对选项中几何体的投影情况进行分析找出正确选项.【解答】解:线段、圆、梯形都是平面图形,且在有限范围内,投影都可能为线段.长方体是三维空间图形,其投影不可能是线段;直线的投影,只能是直线或点.故选:B.【点评】本题考查平行投影及平行投影作图法,解题的关键是熟练掌握并理解投影的规则,由投影的规则对选项作出判断,得出正确选项.8.已知

满足,则直线必过定点

(

)A.

B.

C.

D.参考答案:C9.若角的终边经过点,则(

)A.

B.

C.

D.参考答案:A10.定义运算,如.已知,,则

(

)(A)

(B)

(C)

(D)参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.给出下列命题:(1)存在实数x,使sinx=;

(2)若是锐角△的内角,则>;

(3)函数y=sin(x-)是偶函数;

(4)函数y=sin2x的图象向左平移个单位,得到y=sin(2x+)的图象.其中错误的命题的序号是

.参考答案:(1),(3)略12.在△ABC中,,,则b=_________.参考答案:8.【分析】利用余弦定理构造方程即可解得结果.【详解】由余弦定理得:解得:(舍)或本题正确结果:813.如图,该曲线表示一人骑自行车离家的距离与时间的关系.骑车者9时离开家,15时回家.根据这个曲线图,有以下说法:①9:00~10:00匀速行驶,平均速度是10千米/时;②10:30开始第一次休息,休息了1小时;③11:00到12:00他骑了13千米;④10:00~10:30的平均速度比13:00~15:00的平均速度快;⑤全程骑行了60千米,途中休息了1.5小时.离家最远的距离是30千米;以上说法正确的序号是

.参考答案:①③⑤14.设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),则=.参考答案:【考点】函数的周期性;函数奇偶性的性质;函数的值.【专题】计算题.【分析】由题意得=f(﹣)=﹣f(),代入已知条件进行运算.【解答】解:∵f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),∴=f(﹣)=﹣f()=﹣2×(1﹣)=﹣,故答案为:﹣.【点评】本题考查函数的周期性和奇偶性的应用,以及求函数的值.15.已知圆C经过点,并且直线平分圆C,则圆C的方程为________________.参考答案:【分析】线段的垂直平分线与直线的交点即为圆心.【详解】由题意,线段的垂直平分线方程为:,即,联立解得则圆心为,圆的半径故所求圆的方程为【点睛】本题考查圆的标准方程和两点距离公式.16.函数的定义域是_________

;参考答案:17.已知,且,则cos(x+2y)=.参考答案:1【考点】三角函数的恒等变换及化简求值;两角和与差的余弦函数.【分析】设f(u)=u3+sinu.根据题设等式可知f(x)=2a,f(2y)=﹣2a,进而根据函数的奇偶性,求得f(x)=﹣f(2y)=f(﹣2y).进而推断出x+2y=0.进而求得cos(x+2y)=1.【解答】解:设f(u)=u3+sinu.由①式得f(x)=2a,由②式得f(2y)=﹣2a.因为f(u)在区间上是单调增函数,并且是奇函数,∴f(x)=﹣f(2y)=f(﹣2y).∴x=﹣2y,即x+2y=0.∴cos(x+2y)=1.故答案为:1.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知定义域为的单调函数是奇函数,当时,.

(1)求的解析式;(2)若对任意的,不等式恒成立,求实数的取值范围.(3)若方程没有实数根,试确定实数的取值范围.参考答案:19.已知△ABC的三个内角A,B,C的对边分别为a,b,c,且满足.(1)求角A的大小;(2)若,,,求AD的长参考答案:(1);(2).【分析】(1)利用正弦定理化简已知可得:,结合两角和的正弦公式及诱导公式可得:,问题得解.(2)利用可得:,两边平方并结合已知及平面向量数量积的定义即可得解.【详解】解:(1)因为,所以由正弦定理可得,即,因为,所以,,,故.(2)由已知得,所以,所以.【点睛】本题主要考查了正弦定理的应用及两角和的正弦公式,还考查了利用平面向量的数量积解决长度问题,考查转化能力及计算能力,属于中档题。20.如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O为△ABC的内切圆.(1)求⊙O的半径;(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为ts,若⊙P与⊙O相切,求t的值.参考答案:解:(1)如图1,设⊙O与AB、BC、CA的切点分别为D、E、F,连接OD、OE、OF,则AD=AF,BD=BE,CE=CF.∵⊙O为△ABC的内切圆,∴OF⊥AC,OE⊥BC,即∠OFC=∠OEC=90°.∵∠C=90°,∴四边形CEOF是矩形,∵OE=OF,∴四边形CEOF是正方形.设⊙O的半径为rcm,则FC=EC=OE=rcm,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,∴AB==5cm.∵AD=AF=AC﹣FC=4﹣r,BD=BE=BC﹣EC=3﹣r,∴4﹣r+3﹣r=5,解得r=1,即⊙O的半径为1cm.(2)如图2,过点P作PG⊥BC,垂直为G.∵∠PGB=∠C=90°,∴PG∥AC.∴△PBG∽△ABC,∴.∵BP=t,∴PG=,BG=.若⊙P与⊙O相切,则可分为两种情况,⊙P与⊙O外切,⊙P与⊙O内切.①当⊙P与⊙O外切时,如图3,连接OP,则OP=1+t,过点P作PH⊥OE,垂足为H.∵∠PHE=∠HEG=∠PGE=90°,∴四边形PHEG是矩形,∴HE=PG,PH=CE,∴OH=OE﹣HE=1﹣,PH=GE=BC﹣EC﹣BG=3﹣1﹣=2﹣.在Rt△OPH中,由勾股定理,,解得t=.②当⊙P与⊙O内切时,如图4,连接OP,则OP=t﹣1,过点O作OM⊥PG,垂足为M.∵∠MGE=∠OEG=∠OMG=90°,∴四边形OEGM是矩形,∴MG=OE,OM=EG,∴PM=PG﹣MG=,OM=EG=BC﹣EC﹣BG=3﹣1﹣=2﹣,在Rt△OPM中,由勾股定理,,解得t=2.综上所述,⊙P与⊙O相切时,t=s或t=2s.略21.已知,求的值.参考答案:∵

略22.南海中学校园内建有一块矩形草坪ABCD,AB=50米,BC=米,为了便于师生平时休闲散步,总务科将在这块草坪内铺设三条小路OE、EF和OF,考虑到校园整体规划,要求O是AB的中点,点E在边BC上,点F在边AD上,且∠EOF=90°,如下图所示.(1)设∠BOE=,试将的面积表示成的函数关系式,并求出此函数的定义

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论