版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省青岛市平度同和街道办事处同和中学高三数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设数列是首项大于零的等比数列,则“”是“数列是递增数列”的(
) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件参考答案:C略2.已知正方体中,点P在线段上,点Q在线段上,且,给出下列结论:①A、C、P、Q四点共面;②直线PQ与所成的角为;③;④.D.其中正确结论的个数是
(A)1
(B)2
(C)3
(D)4参考答案:C3.已知函数在上可导,且,则与的大小关系为(
)A. B. C.
D.不确定参考答案:B略4.以下四个命题中:
①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②若两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1;
③根据散点图求得的回归直线方程可能是没有意义的;
④若某项测量结果服从正态分布N(1,),且P(≤4)=0.9,则P(≤-2)=0.1.
其中真命题的个数为
A.1
B.2
C3
D.4参考答案:B5.设函数,则函数的定义域为(
)A.(1,2]
B.(2,4]
C.[1,2)
D.[2,4)参考答案:Bf(x)的定义域为,故,所以选B.
6.一个多面体的直观图和三视图如图所示,M是AB的中点.一只小蜜蜂在几何体ADF—BCE内自由飞翔,则它飞入几何体F—AMCD内的概率为A. B. C. D.
参考答案:C略7.如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E,F分别是棱AA′,CC′的中点,过直线E,F的平面分别与棱BB′、DD′交于M,N,设BM=x,x∈0,1],给出以下四个命题:①平面MENF⊥平面BDD′B′;②当且仅当x=时,四边形MENF的面积最小;③四边形MENF周长L=f(x),x∈0,1]是单调函数;④四棱锥C′﹣MENF的体积V=h(x)为常函数;以上命题中假命题的序号为()A.①④ B.② C.③ D.③④参考答案:C【考点】命题的真假判断与应用.【分析】①利用面面垂直的判定定理去证明EF⊥平面BDD'B'.②四边形MENF的对角线EF是固定的,所以要使面积最小,则只需MN的长度最小即可.③判断周长的变化情况.④求出四棱锥的体积,进行判断.【解答】解:①连结BD,B'D',则由正方体的性质可知,EF⊥平面BDD'B',所以平面MENF⊥平面BDD'B',所以①正确.②连结MN,因为EF⊥平面BDD'B',所以EF⊥MN,四边形MENF的对角线EF是固定的,所以要使面积最小,则只需MN的长度最小即可,此时当M为棱的中点时,即x=时,此时MN长度最小,对应四边形MENF的面积最小.所以②正确.③因为EF⊥MN,所以四边形MENF是菱形.当x∈0,]时,EM的长度由大变小.当x∈,1]时,EM的长度由小变大.所以函数L=f(x)不单调.所以③错误.④连结C'E,C'M,C'N,则四棱锥则分割为两个小三棱锥,它们以C'EF为底,以M,N分别为顶点的两个小棱锥.因为三角形C'EF的面积是个常数.M,N到平面C'EF的距离是个常数,所以四棱锥C'﹣MENF的体积V=h(x)为常函数,所以④正确.所以四个命题中③假命题.所以选C.8.若双曲线x=1(b>0)的一条渐近线与圆x=1至多有一个交点,则双曲线的离心率的取值范围是()A.(1,2] B.[2,+∞) C.(1,] D.[)参考答案:C【考点】双曲线的简单性质.【专题】圆锥曲线中的最值与范围问题.【分析】由已知得圆心(0,)到渐近线y=bx的距离:d=≥1,由此能求出双曲线的离心率的取值范围.【解答】解:圆x2+(y﹣)2=1的圆心(0,),半径r=1.∵双曲线x=1(b>0)的一条渐近线y=bx与圆x2+(y﹣2)2=1至多有一个交点,∴圆心(0,)到渐近线y=bx的距离:d=≥1,化为b2≤2.∴e2=1+b2≤3,∵e>1,∴1<e≤,∴该双曲线的离心率的取值范围是(1,].故选:C.【点评】本题考查双曲线的离心率的取值范围的求法,是中档题,解题时要注意圆、双曲线的性质的简单运用.9.在四面体S﹣ABC中,SA⊥平面ABC,∠BAC=120°,SA=AC=2,AB=1,则该四面体的外接球的表面积为A.11π B. C. D.参考答案:D∵AC=2,AB=1,∠BAC=120°,∴BC=,∴三角形ABC的外接圆半径为r,2r=,r=,∵SA⊥平面ABC,SA=2,由于三角形OSA为等腰三角形,O是外接球的球心.则有该三棱锥的外接球的半径R=,∴该三棱锥的外接球的表面积为S=4πR2=.选D.
10.从分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数字不大于第二张卡片的概率是(
)A. B. C. D.参考答案:C【分析】设第一张卡片上的数字为,第二张卡片的数字为,问题求的是,首先考虑分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,有多少种可能,再求出的可能性有多少种,然后求出.【详解】设第一张卡片上的数字为,第二张卡片的数字为,分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,共有种情况,当时,可能的情况如下表:个数11,2,3,4,5522,3,4,5433,4,5344,52551
,故本题选C.【点睛】本题考查用列举法求概率,本问题可以看成有放回取球问题.二、填空题:本大题共7小题,每小题4分,共28分11.给出下列四个结论:①“若则”的逆命题为真;②若为的极值,则;③函数(x)有3个零点;④对于任意实数x,有且x>0时,,则x<0时.其中正确结论的序号是
.(填上所有正确结论的序号)参考答案:④12.已知的展开式各项系数之和为256,则展开式中含x2项的系数为
.参考答案:28
13.定义在R上的函数f(x)满足f(4)=1,f′(x)为f(x)的导函数,已知函数y=f′(x)的图象如图所示.若两正数a,b满足f(2a+b)<1,则的取值范围是
.参考答案:()【考点】简单线性规划的应用;导数的运算;利用导数研究函数的单调性.【分析】先根据导函数的图象判断原函数的单调性,从而确定a、b的范围,最后利用不等式的性质得到答案.【解答】解:由图可知,当x>0时,导函数f'(x)>0,原函数单调递增,∵两正数a,b满足f(2a+b)<1,又由f(4)=1,即f(2a+b)<4,即2a+b<4,又由a>0.b>0;点(a,b)的区域为图中阴影部分,不包括边界,的几何意义是区域的点与A(﹣2,﹣2)连线的斜率,直线AB,AC的斜率分别是,3;则∈(,3);故答案为:().14.已知球是棱长为12的正四面体的外接球,分别是棱的中点,则平面截球所得截面的面积是
。参考答案:15.若某程序框图如图所示,则该程序运行后输出的值是.参考答案:3考点:循环结构.专题:压轴题;图表型.分析:根据所给数值判定是否满足判断框中的条件,然后执行循环语句,一旦不满足条件就退出循环,执行语句输出i,从而到结论.解答:解:当输入的值为n=12时,n不满足判断框中的条件,n=6,n不满足判断框中的条件,n=3,n满足判断框中的条件,n=10,i=2,n不满足判断框中的条件,n=5,n满足判断框中的条件,n=16,i=3,n不满足判断框中的条件,n=8,n不满足判断框中的条件,n=4,n不满足判断框中的条件,n=2,n不满足判断框中的条件,n=1,n满足下面一个判断框中的条件,退出循环,即输出的结果为i=3,故答案为:3.点评:本题主要考查了循环结构,是当型循环,当满足条件,执行循环,属于基础题.16.某几何体的三视图如图所示,该几何体的体积是______.
参考答案:
由三视图可知,该几何体为直三棱柱,所以体积为。14.某几何体的三视图如图所示,其中主视图的轮廓是底边为,高为1的等腰三角形,俯视图的轮廓为菱形,左视图是个半圆.则该几何体的体积为
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本大题10分)已知函数.(I)当时,解不等式;(II)若存在,使得成立,求实数的取值范围.参考答案:(I);
(II).
略19.设数列的前n项和为,若为常数,则称数列为“科比数列”。
(Ⅰ)等差数列的首项为1,公差不为零,若为“科比数列”,求的通项公式;
(Ⅱ)数列的各项都是正数,前n项和为,若对任意
都成立,试推断数列是否为“科比数列”?并说明理由。参考答案:解:(Ⅰ)设等差数列的公差为,,因为,则,即.整理得.
因为对任意正整数上式恒成立,则,解得.
故数列的通项公式是.
(Ⅱ)由已知,当时,.因为,所以.当时,,.两式相减,得.因为,所以=.
显然适合上式,所以当时,.于是.因为,则,所以数列是首项为1,公差为1的等差数列.所以不为常数,故数列不是“科比数列”20.在△ABC中,a、b、c分别为内角A、B、C的对边,且b2+c2﹣a2=bc.(1)求角A的大小;(2)设函数时,若,求b的值.参考答案:【考点】余弦定理的应用;正弦定理的应用.【分析】(I)利用三角形的余弦定理求出cosA,根据A的范围,求得A的值.(Ⅱ)利用二倍角公式及两角和的正弦公式,化简f(x)为,由求得,再根据B的范围,求得B的值,再由正弦定理求得b的值.【解答】解:(Ⅰ)在△ABC中,由余弦定理知,注意到在△ABC中,0<A<π,所以为所求.(Ⅱ),由,得,注意到,所以,由正弦定理,,所以为所求.21.(本小题满分12分)已知函数,x∈R(ω>0),在y轴右侧的第一个最高点的横坐标为.若将函数f(x)的图象向右平移个单位后,再将得到的图象上各点横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象.(1)求函数g(x)的最大值及单调递减区间.(2)(理)在且求△的面积.(文)在且求角的值.参考答案:即x∈[2kπ+π,2kπ+π],k∈Z为函数的单调递减区间.(2)(理)f(x)=sin(2x+)+,,,而,,,由余弦定理知,,联立解得,。(文)f(x)=sin(2x+)+,,,而,,。22.已知函数的定义域为,若在上为增函数,则称为“一阶比增函数”;若在上为增函数,则称为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为,所有“二阶比增函数”组成的集合记为.
(Ⅰ)已知函数,若且,求实数的取值范围;
(Ⅱ)已知,且的部分函数值由下表给出,求证:;
(Ⅲ)定义集合请问:是否存在常数,使得,,有成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论