版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.复数的模为().A. B.1 C.2 D.2.已知我市某居民小区户主人数和户主对户型结构的满意率分别如图和如图所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为A.240,18 B.200,20C.240,20 D.200,183.已知定义在上的函数的周期为4,当时,,则()A. B. C. D.4.抛物线的焦点为F,点为该抛物线上的动点,若点,则的最小值为()A. B. C. D.5.在中,为边上的中点,且,则()A. B. C. D.6.已知函数,,则的极大值点为()A. B. C. D.7.设函数,当时,,则()A. B. C.1 D.8.已知函数,将函数的图象向左平移个单位长度,得到函数的图象,若函数的图象的一条对称轴是,则的最小值为A. B. C. D.9.函数的图象大致为()A. B.C. D.10.已知复数(为虚数单位),则下列说法正确的是()A.的虚部为 B.复数在复平面内对应的点位于第三象限C.的共轭复数 D.11.设是两条不同的直线,是两个不同的平面,则下列命题正确的是()A.若,,则 B.若,,则C.若,,,则 D.若,,,则12.某地区教育主管部门为了对该地区模拟考试成进行分析,随机抽取了200分到450分之间的2000名学生的成绩,并根据这2000名学生的成绩画出样本的频率分布直方图,如图所示,则成绩在,内的学生人数为()A.800 B.1000 C.1200 D.1600二、填空题:本题共4小题,每小题5分,共20分。13.现有5人要排成一排照相,其中甲与乙两人不相邻,且甲不站在两端,则不同的排法有____种.(用数字作答)14.如图,半圆的直径AB=6,O为圆心,C为半圆上不同于A、B的任意一点,若P为半径OC上的动点,则的最小值为.15.如图,在平面四边形ABCD中,|AC|=3,|BD|=4,则(AB16.已知矩形ABCD,AB=4,BC=3,以A,B为焦点,且过C,D两点的双曲线的离心率为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设等差数列满足,.(1)求数列的通项公式;(2)求的前项和及使得最小的的值.18.(12分)2019年是中华人民共和国成立70周年.为了让人民了解建国70周年的风雨历程,某地的民调机构随机选取了该地的100名市民进行调查,将他们的年龄分成6段:,,…,,并绘制了如图所示的频率分布直方图.(1)现从年龄在,,内的人员中按分层抽样的方法抽取8人,再从这8人中随机选取3人进行座谈,用表示年龄在)内的人数,求的分布列和数学期望;(2)若用样本的频率代替概率,用随机抽样的方法从该地抽取20名市民进行调查,其中有名市民的年龄在的概率为.当最大时,求的值.19.(12分)已知矩阵,且二阶矩阵M满足AMB,求M的特征值及属于各特征值的一个特征向量.20.(12分)已知椭圆()的离心率为,且经过点.(1)求椭圆的方程;(2)过点作直线与椭圆交于不同的两点,,试问在轴上是否存在定点使得直线与直线恰关于轴对称?若存在,求出点的坐标;若不存在,说明理由.21.(12分)如图,直角三角形所在的平面与半圆弧所在平面相交于,,,分别为,的中点,是上异于,的点,.(1)证明:平面平面;(2)若点为半圆弧上的一个三等分点(靠近点)求二面角的余弦值.22.(10分)已知关于的不等式有解.(1)求实数的最大值;(2)若,,均为正实数,且满足.证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【详解】解:,复数的模为.故选:D.【点睛】本题主要考查复数代数形式的乘除运算,考查复数模的求法,属于基础题.2、A【解析】
利用统计图结合分层抽样性质能求出样本容量,利用条形图能求出抽取的户主对四居室满意的人数.【详解】样本容量为:(150+250+400)×30%=240,∴抽取的户主对四居室满意的人数为:故选A.【点睛】本题考查样本容量和抽取的户主对四居室满意的人数的求法,是基础题,解题时要认真审题,注意统计图的性质的合理运用.3、A【解析】
因为给出的解析式只适用于,所以利用周期性,将转化为,再与一起代入解析式,利用对数恒等式和对数的运算性质,即可求得结果.【详解】定义在上的函数的周期为4,当时,,,,.故选:A.【点睛】本题考查了利用函数的周期性求函数值,对数的运算性质,属于中档题.4、B【解析】
通过抛物线的定义,转化,要使有最小值,只需最大即可,作出切线方程即可求出比值的最小值.【详解】解:由题意可知,抛物线的准线方程为,,过作垂直直线于,由抛物线的定义可知,连结,当是抛物线的切线时,有最小值,则最大,即最大,就是直线的斜率最大,设在的方程为:,所以,解得:,所以,解得,所以,.故选:.【点睛】本题考查抛物线的基本性质,直线与抛物线的位置关系,转化思想的应用,属于基础题.5、A【解析】
由为边上的中点,表示出,然后用向量模的计算公式求模.【详解】解:为边上的中点,,故选:A【点睛】在三角形中,考查中点向量公式和向量模的求法,是基础题.6、A【解析】
求出函数的导函数,令导数为零,根据函数单调性,求得极大值点即可.【详解】因为,故可得,令,因为,故可得或,则在区间单调递增,在单调递减,在单调递增,故的极大值点为.故选:A.【点睛】本题考查利用导数求函数的极值点,属基础题.7、A【解析】
由降幂公式,两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质求得参数值.【详解】,时,,,∴,由题意,∴.故选:A.【点睛】本题考查二倍角公式,考查两角和的正弦公式,考查正弦函数性质,掌握正弦函数性质是解题关键.8、C【解析】
将函数的图象向左平移个单位长度,得到函数的图象,因为函数的图象的一条对称轴是,所以,即,所以,又,所以的最小值为.故选C.9、A【解析】
用偶函数的图象关于轴对称排除,用排除,用排除.故只能选.【详解】因为,所以函数为偶函数,图象关于轴对称,故可以排除;因为,故排除,因为由图象知,排除.故选:A【点睛】本题考查了根据函数的性质,辨析函数的图像,排除法,属于中档题.10、D【解析】
利用的周期性先将复数化简为即可得到答案.【详解】因为,,,所以的周期为4,故,故的虚部为2,A错误;在复平面内对应的点为,在第二象限,B错误;的共轭复数为,C错误;,D正确.故选:D.【点睛】本题考查复数的四则运算,涉及到复数的虚部、共轭复数、复数的几何意义、复数的模等知识,是一道基础题.11、C【解析】
根据空间中直线与平面、平面与平面位置关系相关定理依次判断各个选项可得结果.【详解】对于,当为内与垂直的直线时,不满足,错误;对于,设,则当为内与平行的直线时,,但,错误;对于,由,知:,又,,正确;对于,设,则当为内与平行的直线时,,错误.故选:.【点睛】本题考查立体几何中线面关系、面面关系有关命题的辨析,考查学生对于平行与垂直相关定理的掌握情况,属于基础题.12、B【解析】
由图可列方程算得a,然后求出成绩在内的频率,最后根据频数=总数×频率可以求得成绩在内的学生人数.【详解】由频率和为1,得,解得,所以成绩在内的频率,所以成绩在内的学生人数.故选:B【点睛】本题主要考查频率直方图的应用,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、36【解析】
先优先考虑甲、乙两人不相邻的排法,在此条件下,计算甲不排在两端的排法,最后相减即可得到结果.【详解】由题意得5人排成一排,甲、乙两人不相邻,有种排法,其中甲排在两端,有种排法,则6人排成一排,甲、乙两人不相邻,且甲不排在两端,共有(种)排法.所以本题答案为36.【点睛】排列、组合问题由于其思想方法独特,计算量庞大,对结果的检验困难,所以在解决这类问题时就要遵循一定的解题原则,如特殊元素、位置优先原则、先取后排原则、先分组后分配原则、正难则反原则等,只有这样我们才能有明确的解题方向.同时解答组合问题时必须心思细腻、考虑周全,这样才能做到不重不漏,正确解题.14、.【解析】.15、-7【解析】
由题意得AB+【详解】由题意得ABBC+∴AB+【点睛】突破本题的关键是抓住题中所给图形的特点,利用平面向量基本定理和向量的加减运算,将所给向量统一用AC,16、2【解析】
根据为焦点,得;又求得,从而得到离心率.【详解】为焦点在双曲线上,则又本题正确结果:【点睛】本题考查利用双曲线的定义求解双曲线的离心率问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2);时,取得最小值【解析】
(1)设等差数列的公差为,由,结合已知,联立方程组,即可求得答案.(2)由(1)知,故可得,即可求得答案.【详解】(1)设等差数列的公差为,由及,得解得数列的通项公式为(2)由(1)知时,取得最小值.【点睛】本题解题关键是掌握等差数列通项公式和前项和公式,考查了分析能力和计算能力,属于基础题.18、(1)分布列见解析,(1)【解析】
(1)根据频率分布直方图及抽取总人数,结合各组频率值即可求得各组抽取的人数;的可能取值为0,1,1,由离散型随机变量概率求法即可求得各概率值,即可得分布列;由数学期望公式即可求得其数学期望.(1)先求得年龄在内的频率,视为概率.结合二项分布的性质,表示出,令,化简后可证明其单调性及取得最大值时的值.【详解】(1)按分层抽样的方法拉取的8人中,年龄在的人数为人,年龄在内的人数为人.年龄在内的人数为人.所以的可能取值为0,1,1.所以,,,所以的分市列为011.(1)设在抽取的10名市民中,年龄在内的人数为,服从二项分布.由频率分布直方图可知,年龄在内的频率为,所以,所以.设,若,则,;若,则,.所以当时,最大,即当最大时,.【点睛】本题考差了离散型随机变量分布列及数学期望的求法,二项分布的综合应用,属于中档题.19、特征值为1,特征向量为.【解析】
设出矩阵M结合矩阵运算和矩阵相等的条件可求矩阵M,然后利用可求特征值的另一个特征向量.【详解】设矩阵M=,则AM=,所以,解得,所以M=,则矩阵M的特征方程为,解得,即特征值为1,设特征值的特征向量为,则,即,解得x=0,所以属于特征值的的一个特征向量为.【点睛】本题主要考查矩阵的运算及特征量的求解,矩阵运算的关键是明确其运算规则,侧重考查数学运算的核心素养.20、(1)(2)见解析【解析】
(1)由题得a,b,c的方程组求解即可(2)直线与直线恰关于轴对称,等价于的斜率互为相反数,即,整理.设直线的方程为,与椭圆联立,将韦达定理代入整理即可.【详解】(1)由题意可得,,又,解得,.所以,椭圆的方程为(2)存在定点,满足直线与直线恰关于轴对称.设直线的方程为,与椭圆联立,整理得,.设,,定点.(依题意则由韦达定理可得,,.直线与直线恰关于轴对称,等价于的斜率互为相反数.所以,,即得.又,,所以,,整理得,.从而可得,,即,所以,当,即时,直线与直线恰关于轴对称成立.特别地,当直线为轴时,也符合题意.综上所述,存在轴上的定点,满足直线与直线恰关于轴对称.【点睛】本题考查椭圆方程,直线与椭圆位置关系,熟记椭圆方程简单性质,熟练转化题目条件,准确计算是关键,是中档题.21、(1)详见解析;(2).【解析】
(1)由直径所对的圆周角为,可知,通过计算,利用勾股定理的逆定理可以判断出为直角三角形,所以有.由已知可以证明出,这样利用线面垂直的判定定理可以证明平面,利用面面垂直的判定定理可以证明出平面平面;(2)以为坐标原点,分别以垂直于平面向上的方向、向量所在方向作为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,求出相应点的坐标,求出平面的一个法向量和平面的法向量,利用空间向量数量积运算公式,可以求出二面角的余弦值.【详解】解:(1)证明:因为半圆弧上的一点,所以.在中,分别为的中点,所以,且.于是在中,,所以为直角三角形,且.因为,,所以.因为,,,所以平面.又平面,所以平面平面.(2)由已知,以为坐标原点,分别以垂直于、向量所在方向作为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,则,,,,,,.设平面的一个法向量为,则即,取,得.设平面的法向量,则即,取,得.所以,又二面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东省阳江市高新区2024-2025学年高一上学期11月期中考试 语文 含答案
- 《热媒系统清扫方案》课件
- 耳坠市场发展现状调查及供需格局分析预测报告
- 气体引燃器市场需求与消费特点分析
- 《方协议申请步骤》课件
- 眼用制剂市场洞察报告
- 细颈瓶产业规划专项研究报告
- 手推运货车产品入市调查研究报告
- 第二单元 【B卷·培优卷】(含答案解析)(安徽专用)
- 浴室用桶产业运行及前景预测报告
- 第五讲铸牢中华民族共同体意识-2024年形势与政策
- 【寒假阅读提升】四年级下册语文试题-非连续性文本阅读(一)-人教部编版(含答案解析)
- 霍去病课件教学课件
- 邮政储蓄银行的2024年度借款合同范本
- 2.1 充分发挥市场在资源配置中的决定性作用(课件) 2024-2025学年高中政治 必修2 经济与社会
- 汽车吊起重吊装方案
- ASTMD638-03中文版塑料拉伸性能测定方法
- 八年级英语下册 Unit 10 I've had this bike for three years单元说课稿 (新版)人教新目标版
- 译林版(2024新版)七年级上册英语期中复习:完型及阅读 练习题汇编(含答案)
- JJF(浙) 1149-2018 生物实验用干式恒温器校准规范
- 2024-2025学年五年级科学上册第二单元《地球表面的变化》测试卷(教科版)
评论
0/150
提交评论