版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知角的终边经过点,则的值是A.1或 B.或 C.1或 D.或2.若函数有且仅有一个零点,则实数的值为()A. B. C. D.3.已知复数z满足(i为虚数单位),则z的虚部为()A. B. C.1 D.4.已知抛物线的焦点为,对称轴与准线的交点为,为上任意一点,若,则()A.30° B.45° C.60° D.75°5.正方体,是棱的中点,在任意两个中点的连线中,与平面平行的直线有几条()A.36 B.21 C.12 D.66.设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面7.已知函数,存在实数,使得,则的最大值为()A. B. C. D.8.刘徽(约公元225年-295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一他在割圆术中提出的,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正n边形等分成n个等腰三角形(如图所示),当n变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,得到的近似值为()A. B. C. D.9.已知集合,,则为()A. B. C. D.10.已知是虚数单位,若,则()A. B.2 C. D.1011.把函数的图象向右平移个单位长度,得到函数的图象,若函数是偶函数,则实数的最小值是()A. B. C. D.12.已知实数x,y满足约束条件,若的最大值为2,则实数k的值为()A.1 B. C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知正实数满足,则的最小值为.14.已知函数,若关于的方程恰有四个不同的解,则实数的取值范围是______.15.已知正方形边长为,空间中的动点满足,,则三棱锥体积的最大值是______.16.若向量与向量垂直,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)等差数列的公差为2,分别等于等比数列的第2项,第3项,第4项.(1)求数列和的通项公式;(2)若数列满足,求数列的前2020项的和.18.(12分)如图所示,三棱柱中,平面,点,分别在线段,上,且,,是线段的中点.(Ⅰ)求证:平面;(Ⅱ)若,,,求直线与平面所成角的正弦值.19.(12分)在四棱锥中,底面是平行四边形,底面.(1)证明:;(2)求二面角的正弦值.20.(12分)如图,直三棱柱中,底面为等腰直角三角形,,,,分别为,的中点,为棱上一点,若平面.(1)求线段的长;(2)求二面角的余弦值.21.(12分)某芯片公司为制定下一年的研发投入计划,需了解年研发资金投入量x(单位:亿元)对年销售额y(单位:亿元)的影响.该公司对历史数据进行对比分析,建立了两个函数模型:①y=α+βx2,②y=eλx+t,其中现该公司收集了近12年的年研发资金投入量xi和年销售额yi的数据,i=1,2,⋯,12,并对这些数据作了初步处理,得到了右侧的散点图及一些统计量的值.令xyi=1i=1uv20667702004604.20i=1i=1i=1i=13125000215000.30814(1)设ui和yi的相关系数为r1,xi和(2)(i)根据(1)的选择及表中数据,建立y关于x的回归方程(系数精确到0.01);(ii)若下一年销售额y需达到90亿元,预测下一年的研发资金投入量x是多少亿元?附:①相关系数r=i=1n(xi-x②参考数据:308=4×77,90≈9.4868,e22.(10分)已知,,.(1)求的最小值;(2)若对任意,都有,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据三角函数的定义求得后可得结论.【详解】由题意得点与原点间的距离.①当时,,∴,∴.②当时,,∴,∴.综上可得的值是或.故选B.【点睛】利用三角函数的定义求一个角的三角函数值时需确定三个量:角的终边上任意一个异于原点的点的横坐标x,纵坐标y,该点到原点的距离r,然后再根据三角函数的定义求解即可.2、D【解析】
推导出函数的图象关于直线对称,由题意得出,进而可求得实数的值,并对的值进行检验,即可得出结果.【详解】,则,,,所以,函数的图象关于直线对称.若函数的零点不为,则该函数的零点必成对出现,不合题意.所以,,即,解得或.①当时,令,得,作出函数与函数的图象如下图所示:此时,函数与函数的图象有三个交点,不合乎题意;②当时,,,当且仅当时,等号成立,则函数有且只有一个零点.综上所述,.故选:D.【点睛】本题考查利用函数的零点个数求参数,考查函数图象对称性的应用,解答的关键就是推导出,在求出参数后要对参数的值进行检验,考查分析问题和解决问题的能力,属于中等题.3、D【解析】
根据复数z满足,利用复数的除法求得,再根据复数的概念求解.【详解】因为复数z满足,所以,所以z的虚部为.故选:D.【点睛】本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.4、C【解析】
如图所示:作垂直于准线交准线于,则,故,得到答案.【详解】如图所示:作垂直于准线交准线于,则,在中,,故,即.故选:.【点睛】本题考查了抛物线中角度的计算,意在考查学生的计算能力和转化能力.5、B【解析】
先找到与平面平行的平面,利用面面平行的定义即可得到.【详解】考虑与平面平行的平面,平面,平面,共有,故选:B.【点睛】本题考查线面平行的判定定理以及面面平行的定义,涉及到了简单的组合问题,是一中档题.6、B【解析】
本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.【详解】由面面平行的判定定理知:内两条相交直线都与平行是的充分条件,由面面平行性质定理知,若,则内任意一条直线都与平行,所以内两条相交直线都与平行是的必要条件,故选B.【点睛】面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,则”此类的错误.7、A【解析】
画出分段函数图像,可得,由于,构造函数,利用导数研究单调性,分析最值,即得解.【详解】由于,,由于,令,,在↗,↘故.故选:A【点睛】本题考查了导数在函数性质探究中的应用,考查了学生数形结合,转化划归,综合分析,数学运算的能力,属于较难题.8、A【解析】
设圆的半径为,每个等腰三角形的顶角为,则每个等腰三角形的面积为,由割圆术可得圆的面积为,整理可得,当时即可为所求.【详解】由割圆术可知当n变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,设圆的半径为,每个等腰三角形的顶角为,所以每个等腰三角形的面积为,所以圆的面积为,即,所以当时,可得,故选:A【点睛】本题考查三角形面积公式的应用,考查阅读分析能力.9、C【解析】
分别求解出集合的具体范围,由集合的交集运算即可求得答案.【详解】因为集合,,所以故选:C【点睛】本题考查对数函数的定义域求法、一元二次不等式的解法及集合的交集运算,考查基本运算能力.10、C【解析】
根据复数模的性质计算即可.【详解】因为,所以,,故选:C【点睛】本题主要考查了复数模的定义及复数模的性质,属于容易题.11、A【解析】
先求出的解析式,再求出的解析式,根据三角函数图象的对称性可求实数满足的等式,从而可求其最小值.【详解】的图象向右平移个单位长度,所得图象对应的函数解析式为,故.令,,解得,.因为为偶函数,故直线为其图象的对称轴,令,,故,,因为,故,当时,.故选:A.【点睛】本题考查三角函数的图象变换以及三角函数的图象性质,注意平移变换是对自变量做加减,比如把的图象向右平移1个单位后,得到的图象对应的解析式为,另外,如果为正弦型函数图象的对称轴,则有,本题属于中档题.12、B【解析】
画出约束条件的可行域,利用目标函数的几何意义,求出最优解,转化求解即可.【详解】可行域如图中阴影部分所示,,,要使得z能取到最大值,则,当时,x在点B处取得最大值,即,得;当时,z在点C处取得最大值,即,得(舍去).故选:B.【点睛】本题考查由目标函数最值求解参数值,数形结合思想,分类讨论是解题的关键,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】
由题意结合代数式的特点和均值不等式的结论整理计算即可求得最终结果.【详解】.当且仅当时等号成立.据此可知:的最小值为4.【点睛】条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.14、【解析】
设,判断为偶函数,考虑x>0时,的解析式和零点个数,利用导数分析函数的单调性,作函数大致图象,即可得到的范围.【详解】设,则在是偶函数,当时,,由得,记,,,故函数在增,而,所以在减,在增,,当时,,当时,,因此的图象为因此实数的取值范围是.【点睛】本题主要考查了函数的零点的个数问题,涉及构造函数,函数的奇偶性,利用导数研究函数单调性,考查了数形结合思想方法,以及化简运算能力和推理能力,属于难题.15、【解析】
以为原点,为轴,为轴,过作平面的垂线为轴建立空间直角坐标系,设点,根据题中条件得出,进而可求出的最大值,由此能求出三棱锥体积的最大值.【详解】以为原点,为轴,为轴,过作平面的垂线为轴建立空间直角坐标系,则,,,设点,空间中的动点满足,,所以,整理得,,当,时,取最大值,所以,三棱锥的体积为.因此,三棱锥体积的最大值为.故答案为:.【点睛】本题考查三棱锥体积的最大值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.16、0【解析】
直接根据向量垂直计算得到答案.【详解】向量与向量垂直,则,故.故答案为:.【点睛】本题考查了根据向量垂直求参数,意在考查学生的计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】
(1)根据题意同时利用等差、等比数列的通项公式即可求得数列和的通项公式;(2)求出数列的通项公式,再利用错位相减法即可求得数列的前2020项的和.【详解】(1)依题意得:,所以,所以解得设等比数列的公比为,所以又(2)由(1)知,因为①当时,②由①②得,,即,又当时,不满足上式,.数列的前2020项的和设③,则④,由③④得:,所以,所以.【点睛】本题考查等差数列和等比数列的通项公式、性质,错位相减法求和,考查学生的逻辑推理能力,化归与转化能力及综合运用数学知识解决问题的能力.考查的核心素养是逻辑推理与数学运算.是中档题.18、(Ⅰ)证明见详解;(Ⅱ).【解析】
(Ⅰ)取中点为,根据几何关系,求证四边形为平行四边形,即可由线线平行推证线面平行;(Ⅱ)以为坐标原点,建立空间直角坐标系,求得直线的方向向量和平面的法向量,即可求得线面角的正弦值.【详解】(Ⅰ)取的中点,连接,.如下图所示:因为,分别是线段和的中点,所以是梯形的中位线,所以.又,所以.因为,,所以四边形为平行四边形,所以.所以,.所以四边形为平行四边形,所以.又平面,平面,所以平面.(Ⅱ)因为,且平面,故可以为原点,的方向为轴正方向建立如图所示的空间直角坐标系,如下图所示:不妨设,则,所以,,,,.所以,,.设平面的法向量为,则所以可取.设直线与平面所成的角为,则.故可得直线与平面所成的角的正弦值为.【点睛】本题考查由线线平行推证线面平行,以及用向量法求解线面角,属综合中档题.19、(1)见解析(2)【解析】
(1)利用正弦定理求得,由此得到,结合证得平面,由此证得.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的余弦值,再转化为正弦值.【详解】(1)在中,由正弦定理可得:,,底面,平面,;(2)以为坐标原点建立如图所示的空间直角坐标系,,设平面的法向量为,由可得:,令,则,设平面的法向量为,由可得:,令,则,设二面角的平面角为,由图可知为钝角,则,,故二面角的正弦值为.【点睛】本小题主要考查线线垂直的证明,考查空间向量法求二面角,考查空间想象能力和逻辑推理能力,属于中档题.20、(1)(2)【解析】
(1)先证得,设与交于点,在中解直角三角形求得,由此求得的值.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的余弦值.【详解】(1)由题意,,设与交于点,在中,可求得,则,可求得,则(2)以为原点,方向为轴,方向为轴,方向为轴,建立空间直角坐标系.,,,,,易得平面的法向量为.,,易得平面的法向量为.设二面角为,由图可知为锐角,所以.即二面角的余弦值为.【点睛】本小题主要考查根据线面垂直求边长,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.21、(1)模型y=eλx+t的拟合程度更好;(2)(i)v=0.02x+3.84【解析】
(1)由相关系数求出两个系数,比较大小可得;(2)(i)先建立U额R0关于x的线性回归方程,从而得出y(ii)把y=90代入(i
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 香菇销售合同
- 牛料购销合同样式
- 民间委托贷款借款合同范本
- 2024年度不锈钢水箱性能测试与质量认证合同
- 户外广告牌投放合作方合作方责任合同
- 个人实物抵押借款合同范本
- 软件产品购销合同模板解析
- 房屋买卖行纪合同的合同解除权
- 溶剂油买卖合同
- 2024版智能家居系统技术开发许可合同
- HPV感染与宫颈癌关系课件
- 物业合同到期通知函两篇
- 层流洁净手术室机组日常维护与管理记录
- 以“政府绩效与公众信任”为主题撰写一篇小论文6篇
- 鸟的天堂 全省一等奖 完整版课件
- 中国生猪养殖屠宰行业发展现状及展望
- 七版教材中药学教学内容
- 三年级下册音乐课件 第七课 游子吟 湘艺版 19张
- 苏科版八年级物理上册全册教案(完整版)教学设计(含教学反思)
- 二年级上册数学广角《搭配一》
- 劳动第二单元《带着家人去秋游》教学设计教案
评论
0/150
提交评论