版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年广东省广州市第四十六中学高三数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为(
)A.
B.
C.
D.参考答案:C略2.已知的最小值为
(
)
A.6
B.5
C.4
D.3参考答案:C3.下列有关命题的说法正确的是 (
)A.命题“若,则”的否命题为:“若,则”.B.“”是“”的必要不充分条件.C.命题“使得”的否定是:“均有”.
D.命题“若,则”的逆否命题为真命题.参考答案:D略4.已知函数,则满足不等式的的取值范围
A.
B.
C.
D.参考答案:C5.已知某三棱锥的三视图(单位:cm)如图7-2-2所示,则该三棱锥的体积是()A.1cm3
B.2cm3
C.3cm3
D.6cm3参考答案:A略6.某三棱锥的三视图如图所示,则该三棱锥最长的棱的棱长为(
)A.2
B.
C.
D.3参考答案:D由三视图可得几何体的直观图如图所示:有:PB⊥面ABC,PB=2.△ABC中,,BC边上的高为2,所以.该三棱锥最长的棱的棱长为.故选D.
7.双曲线的实轴长是()A.2
B.2
C.4
D.4参考答案:【知识点】双曲线方程及其简单几何性质。H6【答案解析】C
解析:双曲线方程可变形为,所以.故选C.【思路点拨】先把双曲线化成标准方程,再求出实轴长。【答案】【解析】8.已知复数,若,则的值为(
)A.1
B.
C.
D.参考答案:D9.若表示直线,表示平面,且,则“”是“”的
(
)A.充分而不必要条件
B.必要而不充分条件C.充分必要条件
D.既不充分也不必要条件参考答案:D10.定义在R上的偶函数在上递减,,则满足>0的的取值范围是
(
)A.
B.
C.
D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.函数y=cos2x+2sinx的最大值是
.参考答案:【考点】三角函数的最值.【专题】计算题.【分析】利用二倍角公式对函数化简可得y=cos2x+2sinx=1﹣2sin2x+2sinx=,结合﹣1≤sinx≤1及二次函数的性质可求函数有最大值【解答】解:∵y=cos2x+2sinx=1﹣2sin2x+2sinx=又∵﹣1≤sinx≤1当sinx=时,函数有最大值故答案为:【点评】本题主要考查了利用二倍角度公式对三角函数进行化简,二次函数在闭区间上的最值的求解,解题中要注意﹣1≤sinx≤1的条件.12.已知抛物线y2=8x的一条弦AB经过焦点F,O为坐标原点,D为线段OB的中点,延长OA至点C,使|OA|=|AC|,过C,D向y轴作垂线,垂足分别为E,G,则|EG|的最小值为.参考答案:4【考点】K8:抛物线的简单性质.【分析】设直线AB的方程为x=my+1,代入抛物线y2=8x,可得y2﹣8my﹣8=0,|EG|=y2﹣2y1=y2+,利用基本不等式即可得出结论.【解答】解:设直线AB的方程为x=my+1,代入抛物线y2=8x,可得y2﹣8my﹣8=0,设A(x1,y1),B(x2,y2),则y1+y2=8m,y1y2=﹣8,∴|EG|=y2﹣2y1=y2+≥4,当且仅当y2=4时,取等号,即|EG|的最小值为4,故答案为:4.13.已知函数f(x)=(a为常数,e为自然对数的底数)的图象在点A(e,1)处的切线与该函数的图象恰好有三个公共点,则实数a的取值范围是
.参考答案:考点:根的存在性及根的个数判断.专题:函数的性质及应用.分析:利用导数的几何意义求出切线方程,利用分段函数与切线有三个不同的交点,得到当x<1时,切线和二次函数有两个不同的交点,利用二次函数根的分布建立不等式关系,即可求得a的取值范围.解答: 解:当x≥1,函数f(x)的导数,f'(x)=,则f'(e)=,则在A(e,1)处的切线方程为y﹣1=(x﹣e),即y=.当x≥1时,切线和函数f(x)=lnx有且只有一个交点,∴要使切线与该函数的图象恰好有三个公共点,则当x<1时,函数f(x)==,有两个不同的交点,即(x+2)(x﹣a)=x,在x<1时,有两个不同的根,设g(x)=(x+2)(x﹣a)﹣x=x2+(1﹣a)x﹣2a,则满足,即,∴,解得或,即实数a的取值范围是.故答案为:.点评:不同主要考查导数的几何意义,以及函数交点问题,利用二次函数的根的分布是解决本题的关键.考查学生分析问题的能力,综合性较强.14.已知定义在R上的奇函数满足=(x≥0),若,则实数的取值范围是________.参考答案:(-3,1)15.已知单位向量的夹角为,设,则当时,的取值范围是
.参考答案:16.设函数在处取极值,则=_________.参考答案:2略17.下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的体积为______.参考答案:20π【分析】将三视图还原利用体积公式求解即可【详解】由三视图还原为如图几何体:一个圆柱和一个圆锥可得,.故答案为【点睛】本题考查三视图,考查圆柱和圆锥的体积公式,熟记公式准确计算是关键,是基础题三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数.(1)求函数在上的最大值、最小值;(2)当,比较与的大小;(3)求证:.参考答案:(1)在上是增函数,,
4分(2)令,当时,;当;在上是增函数,在是减函数;极大值为是大值,当时,,即.
8分(3),令将上式倒序相加
12分19.(本小题满分14分)设数列的前项和为,,且对任意正整数,点在直线上.求数列的通项公式;若,求数列的前项和.参考答案:点在直线上……………1分当时,……………2分两式相减得:即……………3分又当时,……………4分是首项,公比的等比数列……………5分的通项公式为……………6分由知,……………7分……………8分……………9分两式相减得:……………11分……………13分数列的前项和为……………14分20.(13分)椭圆的中心为原点,焦点在轴上,离心率,过的直线与椭圆交于、两点,且,求面积的最大值及取得最大值时椭圆的方程.参考答案:解析:设椭圆的方程为直线的方程为,
,则椭圆方程可化为即,联立得
(*)
有而由已知有,代入得
所以,当且仅当时取等号
(8分)由得,将代入(*)式得所以面积的最大值为,取得最大值时椭圆的方程为
(13分)21.已知函数f(x)=ax﹣ln(x+1),a为实数.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若a=,不等式<f(x)在(0,+∞)恒成立,求实数b的取值范围.参考答案:【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(Ⅱ)问题转化为b<x2+2x+﹣(x+1)ln(x+1)在(0,+∞)恒成立,令g(x)=x2+2x+﹣(x+1)ln(x+1),根据函数的单调性求出b的范围即可.【解答】解:(Ⅰ)∵f′(x)=a﹣=,(i)当a≤0时,因x+1>0,f′(x)<0,∴函数在(﹣1,+∞)上单调递减;…(ii)当a>0时,令f′(x)=0,解得:x=1﹣,①当0<a≤时,f′(x)≥0,函数在(﹣1,+∞)上单调递增…②当a>时,x∈(﹣1,1﹣),f′(x)<0,函数单调递减,x∈(1﹣,+∞),f′(x)>0,函数单调递增…(Ⅱ)当a=时,f(x)=x﹣ln(x+1),∴﹣<f(x),∴﹣<x﹣ln(x+1),∴b<x2+2x+﹣(x+1)ln(x+1)在(0,+∞)恒成立,…令g(x)=x2+2x+﹣(x+1)ln(x+1),则g′(x)=x+1﹣ln(x+1)…令h(x)=x+1﹣ln(x+1),h′(x)=1﹣=…当x>0时,h′(x)>0,函数h(x)在(0,+∞)为增函数,故h(x)>h(0)=1…从而
当x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 云南工程职业学院《流行音乐器乐演奏(1)》2023-2024学年第一学期期末试卷
- 新媒体时代下信息传播速度与范围
- 公司年度总结与展望模板
- 市场营销成果报告模板
- 业务操作-房地产经纪人《业务操作》模拟试卷2
- 房地产交易制度政策-《房地产基本制度与政策》预测试卷3
- 医生辞职报告怎么写
- 二零二五年度轨道交通信号系统安装合同6篇
- 山东省菏泽市2024-2025学年高二上学期期末教学质量检测数学试题参考答案
- 2024-2025学年四川省泸州市老窖天府中学高一(上)期末数学试卷(含答案)
- 第22单元(二次函数)-单元测试卷(2)-2024-2025学年数学人教版九年级上册(含答案解析)
- 蓝色3D风工作总结汇报模板
- 安全常识课件
- 小王子-英文原版
- 2024年江苏省导游服务技能大赛理论考试题库(含答案)
- 2024年中考英语阅读理解表格型解题技巧讲解(含练习题及答案)
- 新版中国食物成分表
- 浙江省温州市温州中学2025届数学高二上期末综合测试试题含解析
- 保安公司市场拓展方案-保安拓展工作方案
- 10以内加减法(直接打印,20篇)
- 三年级上册口算题(1000道打印版)
评论
0/150
提交评论