版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年山西省吕梁市汾阳第四高级中学高二数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.执行如图所示的程序框图,输出的T=()A.29B.44C.52D.62参考答案:A考点:循环结构.专题:算法和程序框图.分析:执行程序框图,依次写出每次循环得到的S,T,n的值,当S=12,n=4,T=29时,满足条件T>2S,退出循环,输出T的值为29.解答:解:执行程序框图,有S=3,n=1,T=2,不满足条件T>2S,S=6,n=2,T=8不满足条件T>2S,S=9,n=3,T=17不满足条件T>2S,S=12,n=4,T=29满足条件T>2S,退出循环,输出T的值为29.故选:A.点评:本题主要考察了程序框图和算法,属于基本知识的考查.2.设直线与圆相切,则=(
)A.
B.
C.
D.参考答案:C3.函数y=tan(x﹣)(0<x<4)的图象如图所示,A为图象与x轴的交点,过点A的直线l与函数的图象交于B、C两点,则(+)?等于()A.﹣8 B.﹣4 C.4 D.8参考答案:D【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】令tan(x﹣)=0,0<x<4,可得x=2.设B(x1,y1),C(x2,y2).由于函数y=tan(x﹣)(0<x<4)关于点(2,0)中心对称,可得x1+x2=4.利用数量积运算性质即可得出.【解答】解:令tan(x﹣)=0,∵0<x<4,∴﹣<,∴=0,解得x=2.设直线l的方程为:y=k(x﹣2),B(x1,y1),C(x2,y2).由于函数y=tan(x﹣)(0<x<4)关于点(2,0)中心对称,∴x1+x2=4.∴(+)?=(x1+x2,y1+y2)?(2,0)=2(x1+x2)=8.故选:D.【点评】本题考查了向量数量积运算性质、正切函数的图象与性质,考查了推理能力与计算能力,属于中档题.4.函数的单调递减区间是(
)A. B. C. D.参考答案:D【分析】先求函数定义域,再由复合函数单调性得结论.【详解】由得,即函数定义域是,在上递增,在上递减,而是增函数,∴的减区间是.故选:D.【点睛】本题考查对数型复合函数的单调性,解题时先求出函数的定义域,函数的单调区间应在定义域内考虑.5.已知数列…是这个数列的第(
)项
A.10
B.11
C.12
D.21参考答案:B6.若a>b且c∈R,则下列不等式中一定成立的是()A.a2>b2 B.ac>bc C.ac2>bc2 D.a﹣c>b﹣c参考答案:D【考点】不等式的基本性质.【专题】计算题.【分析】把不等式两边同时加上同一个实数﹣c,不等号不变.【解答】解:∵a>b且c∈R,不等式两边同时加上﹣c可得,a﹣c>b﹣c.故选D.【点评】本题主要考查不等式的性质的应用,利用了不等式两边同时加上同一个实数,不等号不变.7.△ABC满足,∠BAC=30°,设M是△ABC内的一点(不在边界上),定义f(M)=(x,y,z),其中x、y、z分别表示△MBC、△MCA、△MAB的面积,若f(M)=(x,y,),则的最小值为(C)A.9
B.8
C.18
D.16参考答案:C8.“﹣3<m<5”是“方程+=1表示椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件参考答案:B【考点】必要条件、充分条件与充要条件的判断.【分析】利用充分条件和必要条件的定义判断.【解答】解:若方程+=1表示椭圆,则,所以,即﹣3<m<5且m≠1.所以“﹣3<m<5”是“方程+=1表示椭圆”的必要不充分条件.故选B.9.已知x与y之间的一组数据x0123y1357则y与x的线性回归方程=bx+必过点()A.(2,2) B.(1.5,4) C.(1.5,0) D.(1,2)参考答案:B【考点】BK:线性回归方程.【分析】先分别计算平均数,可得样本中心点,利用线性回归方程必过样本中心点,即可得到结论.【解答】解:由题意,=(0+1+2+3)=1.5,=(1+3+5+7)=4∴x与y组成的线性回归方程必过点(1.5,4)故选:B.10.若a、b、c∈R,a>b,则下列不等式成立的是()A. B.a2>b2C. D.a|c|>b|c|参考答案:C【考点】71:不等关系与不等式.【分析】本选择题利用取特殊值法解决,即取符合条件的特殊的a,b的值,可一一验证A,B,D不成立,而由不等式的基本性质知C成立,从而解决问题.【解答】解:对于A,取a=1,b=﹣1,即知不成立,故错;对于B,取a=1,b=﹣1,即知不成立,故错;对于D,取c=0,即知不成立,故错;对于C,由于c2+1>0,由不等式基本性质即知成立,故对;故选C.二、填空题:本大题共7小题,每小题4分,共28分11.已知向量与向量分别是直线l与直线m的方向向量,则直线l与直线m所成角的余弦值为.参考答案:【考点】异面直线及其所成的角.【分析】直线l与直线m所成角的余弦值为|cos<>|,由此能求出结果.【解答】解:∵向量与向量分别是直线l与直线m的方向向量,∴直线l与直线m所成角的余弦值为:|cos<>|===.故答案为:.【点评】本题考查两直线所成角的余弦值的求法,是基础题,解题时要认真审题,注意向量法的合理运用.12.与2的大小关系为________参考答案:>【分析】平方作差即可得出.【详解】解:∵=13+2(13+4)0,∴2,故答案为:>.【点睛】本题考查了平方作差比较两个数的大小关系,考查了推理能力与计算能力,属于基础题.13.读如图两段程序,完成下面题目.若Ⅰ、Ⅱ的输出结果相同,则程序Ⅱ中输入的值x为
.参考答案:0考点:伪代码.专题:算法和程序框图.分析:根据题意,模拟伪代码的运行过程,即可得出正确的结论.解答: 解:根据题意,Ⅰ中伪代码运行后输出的是x=3×2=6;Ⅱ中运行后输出的也是y=6,∴x2+6=6,∴x=0;即输入的是0.故答案为:0.点评:本题考查了算法语言的应用问题,解题时应模拟算法语言的运行过程,以便得出正确的结果,属于基础题.14.分别是双曲线的左、右焦点,过作轴的垂线,与双曲线的一个交点为,且,则双曲线的渐近线方程为___________.参考答案:15.以双曲线的右焦点为圆心,且与其渐近线相切的圆的方程是
.参考答案:16.在z轴上与点A(﹣4,1,7)和点B(3,5,﹣2)等距离的点C的坐标为.参考答案:(0,0,)【考点】空间两点间的距离公式.【分析】根据C点是z轴上的点,设出C点的坐标(0,0,z),根据C点到A和B的距离相等,写出关于z的方程,解方程即可得到C的竖标,写出点C的坐标.【解答】解:由题意设C(0,0,z),∵C与点A(﹣4,1,7)和点B(3,5,﹣2)等距离,∴|AC|=|BC|,∴=,∴18z=28,∴z=,∴C点的坐标是(0,0,)故答案为:(0,0,)17.椭圆上一点P与椭圆的两个焦点F1、F2的连线互相垂直,则△PF1F2的面积为.参考答案:9【考点】椭圆的简单性质.【分析】椭圆,可得a=5,b=3,c=.设|PF1|=m,|PF2|=n,则m+n=2a=10,m2+n2=(2c)2,联立解出即可得出.【解答】解:∵椭圆,∴a=5,b=3,c==4.设|PF1|=m,|PF2|=n,则m+n=2a=10,m2+n2=(2c)2=64,∴mn=18.∴△PF1F2的面积=mn=9.故答案为:9.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.计算:的值
参考答案:466
略19.为了解人们对“2019年3月在北京召开的第十三届全国人民代表大会第二次会议和政协第十三届全国委员会第二次会议”的关注度,某部门从年龄在15岁到65岁的人群中随机调查了100人,并得到如图所示的年龄频率分布直方图,在这100人中关注度非常髙的人数与年龄的统计结果如表所示:年龄关注度非常高的人数[15,25)15[25,35)5[35,45)15[45,55)23[55,65)17
(1)由频率分布直方图,估计这100人年龄的中位数和平均数;(2)根据以上统计数据填写下面的2×2列联表,据此表,能否在犯错误的概率不超过5%的前提下,认为以45岁为分界点的不同人群对“两会”的关注度存在差异?(3)按照分层抽样的方法从年龄在35岁以下的人中任选六人,再从六人中随机选两人,求两人中恰有一人年龄在25岁以下的概率是多少.
45岁以下45岁以上总计非常高
一般
总计
参考数据:0.1000.0500.0100.0012.7063.8416.63510.828
参考答案:(1)中位数为45(岁),平均数为42(岁);(2)不能.(3).【分析】(1)根据频率分布直方图中位数两侧频率之和均为0.5可得出中位数,将频率分布直方图中每个矩形底边中点值乘以矩形的面积,再将各乘积相加可得出平均数;(2)根据题中信息完善列联表,并计算出的观测值,并与进行大小比较,利用临界值表可对题中结论的正误进行判断;(3)利用利用分层抽样的特点计算出所选的6人中年龄在25岁以下和年龄在25岁到35岁间的人数,并对这些人进行编号,列出所有的基本事件,并确定基本事件的总数,然后确定事件“从六人中随机选两人,求两人中恰有一人年龄在25岁以下”所包含的基本事件数,利用古典概型的概率公式可得出所求事件的概率.【详解】(1)由频率分布直方图可得,45两侧的频率之和均为0.5,所以估计这100人年龄的中位数为45(岁).平均数为(岁);(2)由频率分布直方图可知,45岁以下共有50人,45岁以上共有50人,列联表如下:
岁以下岁以上总计非常高一般
总计
,不能在犯错误的概率不超过的前提下,认为以岁为分界点的不同人群对“两会”的关注度存在差异;(3)年龄在25岁以下的人数为人,年龄在25岁到35岁之间的人数为人,按分层抽样的方法在这30人中任选6人,其中年龄在25岁以下的有4人,设为、、、.年龄在25岁到35岁之间的有2人,设为、,从这6人中随机选两人,有、、、、、、、、、、、、、、,共15种选法,而恰有一人年龄在25岁以下的选法有:、、、、、、、,共8种,因此,“从六人中随机选两人,求两人中恰有一人年龄在25岁以下”的概率是.【点睛】本题考查频率分布直方图中中位数和平均数的计算,同时也考查了独立性检验的基本思想和古典概型概率的计算,考查收集数据和处理数据的能力,同时也考查了计算能力,属于中等题.20.已知过点A(﹣4,0)的动直线l与抛物线C:x2=2py(p>0)相交于B、C两点.当l的斜率是时,.(1)求抛物线C的方程;(2)设BC的中垂线在y轴上的截距为b,求b的取值范围.参考答案:【考点】直线与圆锥曲线的综合问题.【分析】(1)设出B,C的坐标,利用点斜式求得直线l的方程,与抛物线方程联立消去x,利用韦达定理表示出x1+x2和x1x2,根据求得y2=4y1,最后联立方程求得y1,y2和p,则抛物线的方程可得.(2)设直线l的方程,AB中点坐标,把直线与抛物线方程联立,利用判别式求得k的范围,利用韦达定理表示出x1+x2,进而求得x0,利用直线方程求得y0,进而可表示出AB的中垂线的方程,求得其在y轴上的截距,根据k的范围确定b的范围.【解答】解:(1)设B(x1,y1),C(x2,y2),由已知k1=时,l方程为y=(x+4)即x=2y﹣4.由得2y2﹣(8+p)y+8=0①②∴又∵,∴y2=4y1③由①②③及p>0得:y1=1,y2=4,p=2,即抛物线方程为:x2=4y.
(2)设l:y=k(x+4),BC中点坐标为(x0,y0)由得:x2﹣4kx﹣16k=0④∴.∴BC的中垂线方程为∴BC的中垂线在y轴上的截距为:b=2k2+4k+2=2(k+1)2对于方程④由△=16k2+64k>0得:k>0或k<﹣4.∴b∈(2,+∞)【点评】本题主要考查了直线与圆锥曲线的综合问题.解决此类问题要充分发挥判别式和韦达定理在解题中的作用.21.把半椭圆=1(x≥0)与圆弧(x﹣c)2+y2=a2(x<0)合成的曲线称作“曲圆”,其中F(c,0)为半椭圆的右焦点.如图,A1,A2,B1,B2分别是“曲圆”与x轴、y轴的交点,已知∠B1FB2=,扇形FB1A1B2的面积为.(1)求a,c的值;(2)过点F且倾斜角为θ的直线交“曲圆”于P,Q两点,试将△A1PQ的周长L表示为θ的函数;(3)在(2)的条件下,当△A1PQ的周长L取得最大值时,试探究△A1PQ的面积是否为定值?若是,请求出该定值;若不是,请求出面积的取值范围.参考答案:【考点】椭圆的简单性质.【分析】(1)由扇形FB1A1B2的面积为可得a,在△OFB2中,tan∠OFB2=tan60°=,又因为c2+b2=a2,可得c.(2)分①当θ∈(0,);
②当θ∈();
③当θ∈(,)求出△A1PQ的周长;(3)在(2)的条件下,当△A1PQ的周长L取得最大值时P、Q在半椭圆:(x≥0)上,利用弦长公式、点到直线的距离公式,表示面积,再利用单调性求出范围.【解答】解:(1)∵扇形FB1A1B2的面积为=,∴a=2,圆弧(x﹣c)2+y2=a2(x<0)与y轴交点B2(0,b),在△OFB2中,tan∠OFB2=tan60°=,又因为c2+b2=a2,∴c=1.(2)显然直线PQ的斜率不能为0(θ∈(0,π)),故设PQ方程为:x=my+1由(1)得半椭圆方程为:(x≥0)与圆弧方程为:(x﹣1)2+y2=4(x<0),且A1(﹣1,0)恰为椭圆的左焦点.①当θ∈(0,)时,P、Q分别在圆弧:(x﹣1)2+y2=4(x<0)、半椭圆:(x≥0)上,△A1PO为腰为2的等腰三角形|A1P|=4sin,△A1PQ的周长L=|QA1|+|QF|+|PF|+|A1P|=2a+a+|A1P|=6+4sin,②当θ∈()时,P、Q分别在圆弧:(x﹣1)2+y2=4(x<0)、半椭圆:(x≥0)上,△A1PO为腰为2的等腰三角形|A1P|=4cos,△A1PQ的周长L=|QA1|+|QF|+|PF|+|A1P|=2a+a+|A1P|=6+4cos,③当θ∈(,)时,P、Q在半椭圆:(x≥0)上,△A1PO为腰为2的等腰三角形|A1P|=4sin,△A1PQ的周长L=|QA1|+|QF|+|PF|+|A1P|=4a=8(3)在(2)的条件下,当△A1PQ的周长L取得最大值时P、Q在半椭圆:(x≥
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 取消婚约协议书(2篇)
- 水果批发市场销售合同
- 备件订购合同样本
- 个人合同咨询服务协议范本
- 防水工程质量安全承诺
- 物料采购合同书范例
- 房地产互换合同
- 著作权买卖合同样本
- 招聘代理服务合同
- 建筑项目沉降观测招标
- GB/T 19668.7-2022信息技术服务监理第7部分:监理工作量度量要求
- GB/T 5237.1-2017铝合金建筑型材第1部分:基材
- GB/T 16917.1-2014家用和类似用途的带过电流保护的剩余电流动作断路器(RCBO)第1部分:一般规则
- 高中思想政治课选择性必修2《法律与生活》教材使用建议与典型课例研究课件
- 多效蒸馏水机课件
- 农业机械安全生产及法律法规课件
- DB22-T 5036-2020建设工程项目招标投标活动程序标准-(高清正版)
- 读后续写练习写作指导 讲义-2023届高考英语写作备考
- 基本饮食课件
- 湖北省随州市各县区乡镇行政村村庄村名居民村民委员会明细
- T∕CSTM 00837-2022 材料基因工程数据 元数据标准化原则与方法
评论
0/150
提交评论