2022年安徽省合肥市凯悦中学高一数学理月考试卷含解析_第1页
2022年安徽省合肥市凯悦中学高一数学理月考试卷含解析_第2页
2022年安徽省合肥市凯悦中学高一数学理月考试卷含解析_第3页
2022年安徽省合肥市凯悦中学高一数学理月考试卷含解析_第4页
2022年安徽省合肥市凯悦中学高一数学理月考试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年安徽省合肥市凯悦中学高一数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.定义为n个正数p1,p2,…,pn的“均倒数”.若已知正数数列{an}的前n项的“均倒数”为,又bn=,则+++…+=()A. B. C. D.参考答案:C【考点】8E:数列的求和.【分析】直接利用给出的定义得到=,整理得到Sn=2n2+n.分n=1和n≥2求出数列{an}的通项,验证n=1时满足,所以数列{an}的通项公式可求;再利用裂项求和方法即可得出.【解答】解:由已知定义,得到=,∴a1+a2+…+an=n(2n+1)=Sn,即Sn=2n2+n.当n=1时,a1=S1=3.当n≥2时,an=Sn﹣Sn﹣1=(2n2+n)﹣=4n﹣1.当n=1时也成立,∴an=4n﹣1;∵bn==n,∴==﹣,∴+++…+=1﹣+﹣+…+﹣=1﹣=,∴+++…+=,故选:C2.已知锐角△ABC中,角A,B,C所对的边分别为a,b,c,若,则的取值范围是(

)A. B. C. D.参考答案:B【分析】利用余弦定理化简后可得,再利用正弦定理把边角关系化为角的三角函数的关系式,从而得到,因此,结合的范围可得所求的取值范围.【详解】,因为为锐角三角形,所以,,,故,选B.【点睛】在解三角形中,如果题设条件是关于边的二次形式,我们可以利用余弦定理化简该条件,如果题设条件是关于边的齐次式或是关于内角正弦的齐次式,那么我们可以利用正弦定理化简该条件,如果题设条件是边和角的混合关系式,那么我们也可把这种关系式转化为角的关系式或边的关系式.3.如图,三棱柱A1B1C1﹣ABC中,已知D,E,F分别为AB,AC,AA1的中点,设三棱锥A﹣FED的体积为V1,三棱柱A1B1C1﹣ABC的体积为V2,则V1:V2的值为()A.B.C.D.参考答案:B【考点】棱柱、棱锥、棱台的体积.【分析】设三棱柱的高为h,则小三棱锥的高为,利用相似比得出△ADE与△ABC的面积比,代入体积公式即可得出V1:V2的值.【解答】解:设三棱柱的高为h,∵F是AA1的中点,则三棱锥F﹣ADE的高为.∵D,E是AB,AC的中点,∴S△ADE=S△ABC.∵V1=,V2=S△ABC?h,∴==.故选:B.4.点的坐标满足条件,若,,且,则的最大值为(

)A.2 B.3 C.4 D.5参考答案:D【分析】根据向量线性运算的坐标公式,得到,由此代入题中的不等式组,可得关于、的不等式组.作出不等式组表示的平面区域,利用数形结合思想即可求解。【详解】解:,,且,则,则,代入不等式,可得,作出不等式组表示的平面区域(阴影部分),又,其中表示点与原点连线的斜率,当点在点处斜率最大,由得:的最大值为,所以的最大值为.故选:D.【点睛】本题主要考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,将条件转换为关于、的不等式组是解决本题的关键,属于中档题。5.已知在上是的减函数,则的取值范围是(

)A.

B.

C.

D.参考答案:B

解析:令是的递减区间,∴而须恒成立,∴,即,∴;6.幂函数f(x)=(m2﹣m﹣5)xm+1在(0,+∞)上单调递减,则m等于()A.3 B.﹣2 C.﹣2或3 D.﹣3参考答案:B【考点】幂函数的性质.【分析】根据幂函数的定义求出m,利用幂函数的性质即可确定m的值.【解答】解:∵f(x)=(m2﹣m﹣5)xm+1是幂函数,∴m2﹣m﹣5=1,即m2﹣m﹣2=0,解得m=﹣2或m=3.∵幂函数f(x)=(m2﹣m﹣5)xm+1在(0,+∞)上单调递减,∴m+1<0,即m=﹣2,故选B..7.圆心为(1,1)且过原点的圆的方程是()A.(x﹣1)2+(y﹣1)2=1 B.(x+1)2+(y+1)2=1 C.(x+1)2+(y+1)2=2 D.(x﹣1)2+(y﹣1)2=2参考答案:D【考点】圆的标准方程.【分析】利用两点间距离公式求出半径,由此能求出圆的方程.【解答】解:由题意知圆半径r=,∴圆的方程为(x﹣1)2+(y﹣1)2=2.故选:D.8.现有1名女教师和2名男教师参加说题比赛,共有2道备选题目,若每位选手从中有放回地随机选出一道题进行说题,其中恰有一男一女抽到同一道题的概率为()A. B. C. D.参考答案:C【考点】CB:古典概型及其概率计算公式.【分析】基本事件总数n=23=8,设两道题分别为A,B题,利用列举法求出满足恰有一男一女抽到同一题目的事件个数,由此能求出其中恰有一男一女抽到同一道题的概率.【解答】解:现有1名女教师和2名男教师参加说题比赛,共有2道备选题目,若每位选手从中有放回地随机选出一道题进行说题,基本事件总数n=23=8,设两道题分别为A,B题,所以抽取情况共有:AAA,AAB,ABA,ABB,BAA,BAB,BBA,BBB,其中第1个,第2个分别是两个男教师抽取的题目,第3个表示女教师抽取的题目,一共有8种;其中满足恰有一男一女抽到同一题目的事件有:ABA,ABB,BAA,BAB,共4种,故其中恰有一男一女抽到同一道题的概率为p=.故选:C.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.9.在中,分别为角的对边,若,则的形状(

)A.直角三角形

B.等腰三角形

C.等边三角形

D.等腰直角三角形参考答案:B略10.函数,若实数满足,则

A.

1

B.

-1

C.

-9

D.

9参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.已知,,则=

参考答案:12.计算:________;________.参考答案:8

1【分析】利用指数的运算法则计算,利用对数的运算法则计算即可.【详解】由题意,,.故答案为:8;1【点睛】本题主要考查指数和对数的运算法则,属于简单题.13.若,则=

.

参考答案:略14.已知集合M={(x,y)|x+y=2},N={(x,y)|x﹣y=4},则M∩N等于.参考答案:{(3,﹣1)}考点:交集及其运算.

分析:集合M,N实际上是两条直线,其交集即是两直线的交点.解答:解:联立两方程解得∴M∩N={(3,﹣1)}.故答案为{(3,﹣1)}.点评:本题主要考查了集合的交运算,注意把握好各集合中的元素15.如果幂函数的图象经过点,则的值等于_____________参考答案:略16.过点P(t,t)作圆C:(x一2)2+y2=1的两条切线,切点为A,B,若直线AB过点(2,),则t=____.参考答案:8【分析】根据圆的方程得到圆C的圆心坐标和圆的半径,从而求得以为直径的圆的方程,将两圆方程相减,求得两圆公共弦所在直线的方程,根据直线过点的条件,得到关于的等量关系式,最后求得结果.【详解】因为圆C:的圆心为,,所以以为直径的圆的方程为,即,可得:,即直线的方程为,因为直线过点,所以,解得,故答案是:8.【点睛】该题考查的是有关圆的问题,涉及到的知识点有以某条线段为直径的圆的方程,两圆的公共弦所在直线的方程,点在直线上的条件,属于中档题目.17.设函数,如果方程恰有两个不同的实数根,满足,则实数a的取值范围是.参考答案:解析:因为当a>3时,无解;当a=3时,只有一个解.当时,直线与和有两个交点,故此时有两个不同的解;当a<时,直线与和有两个交点,故此时有两个不同的解.对于上述两种情形,分别求出它们的解,然后解不等式,可得实数a的取值范围是.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.△ABC的内角A,B,C所对边分别为a,b,c,已知.(1)求C;(2)若,,求△ABC的面积.参考答案:(1);(2)5.【分析】(1)根据正弦定理得,化简即得C的值;(2)先利用余弦定理求出a的值,再求的面积.【详解】(1)因为,根据正弦定理得,又,从而,由于,所以.(2)根据余弦定理,而,,,代入整理得,解得或(舍去).故△ABC的面积为.【点睛】本题主要考查正弦余弦定理解三角形,考查三角形面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.19.在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱(1)摸出的3个球为白球的概率是多少?(2)摸出的3个球为2个黄球1个白球的概率是多少?(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?参考答案:解:把3只黄色乒乓球标记为A、B、C,3只白色的乒乓球标记为1、2、3。

从6个球中随机摸出3个的基本事件为:ABC、AB1、AB2、AB3、AC1、AC2、AC3、A12、A13、A23、BC1、BC2、BC3、B12、B13、B23、C12、C13、C23、123,共20个(1)

事件E={摸出的3个球为白球},事件E包含的基本事件有1个,即摸出123号3个球,P(E)=1/20=0.05(2)

事件F={摸出的3个球为2个黄球1个白球},事件F包含的基本事件有9个,P(F)=9/20=0.45www.(3)

事件G={摸出的3个球为同一颜色}={摸出的3个球为白球或摸出的3个球为黄球},P(G)=2/20=0.1,假定一天中有100人次摸奖,由摸出的3个球为同一颜色的概率可估计事件G发生有10次,不发生90次。则一天可赚,每月可赚1200元。略20.如图,多面体中,两两垂直,平面平面,平面平面,.(1)证明四边形是正方形;(2)判断点是否四点共面,并说明为什么?(3)连结,求证:平面.

参考答案:证明:(1)

…………..2分同理,……..3分则四边形是平行四边形.又四边形是正方形.……..4分(2)取中点,连接.在梯形中,且.又且,且.……..5分四边形为平行四边形,……..6分.……..7分在梯形中,

,……..9分四点共面.

…….10分(3)同(1)中证明方法知四边形BFGC为平行四边形.且有,从而,.

……..12分又故,而,故四边形BFGC为菱形,

.

……..14分

又由知.正方形中,,故..

……..16分

21.用定义证明函数在(-2,)上的单调性。参考答案:略22.已知=(cosα,sinα),=(cosβ,sinβ),其中0<α<β<π. (1)求证:与互相垂直; (2)若k与﹣k的长度相等,求β﹣α的值(k为非零的常数). 参考答案:【考点】数量积判断两个平面向量的垂直关系;平面向量数量积的坐标表示、模、夹角. 【分析】(1)根据已知中向量,的坐标,分别求出向量+与﹣的坐标,进而根据向量数量积公式及同角三角函数的平方关系,可证得与互相垂直; (2)方法一:分别求出k与﹣k的坐标,代入向量模的公式,求出k与﹣k的模,进而可得cos(β﹣α)=0,结合已知中0<α<β<π,可得答案. 方法二:由|k+|=|﹣k|得:|k+|2=|﹣k|2,即(k+)2=(﹣k)2,展开后根据两角差的余弦公式,可得cos(β﹣α)=0,结合已知中0<α<β<π,可得答案. 【解答】证明:(1)由题意得:+=(cosα+cosβ,sinα+sinβ) ﹣=(cosα﹣cosβ,sinα﹣sinβ) ∴(+)(﹣)=(cosα+cosβ)(cosα﹣cosβ)+(sinα+sinβ)(sinα﹣sinβ) =cos2α﹣cos2β+sin2α﹣sin2β=1﹣1=0 ∴+与﹣互相垂直. 解:(2)方法一:k+=(kcosα+cosβ,ksinα+sinβ), ﹣k=(cosα﹣kcosβ,sinα﹣ksinβ) |k+|=,|﹣k|= 由题意,得4cos(β﹣α)=0, 因为0<α<β<π, 所以β

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论