版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022四川省绵阳市高灯镇中学高三数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图(Ⅰ)是反映某条公共汽车线路收支差额与乘客量之间关系的图象.由于目前该条公交线路亏损,公司有关人员提出两种调整建议,如图(Ⅱ)、(Ⅲ)所示.(注:收支差额=营业所得的票价收入-付出的成本)
给出以下说法:①图(Ⅱ)的建议是:提高成本,并提高票价②图(Ⅱ)的建议是:降低成本,并保持票价不变;③图(Ⅲ)的建议是:提高票价,并保持成本不变;④图(Ⅲ)的建议是:提高票价,并降低成本.其中说法正确的序号是(A)①③
(B)①④
(C)②③
(D)②④参考答案:C略2.若函数的图象在处的切线与圆相切,则的最大值是(A)4
(B)
(C)2
(D)参考答案:D3.己知命题“”是假命题,则实数的取值范围是(
)
A.
B.
C.(?3,1)
D.[?3,1]参考答案:C略4.设,则A.
B.
C.
D.参考答案:D略5.已知函数的最小正周期为π,为了得到函数的图象,只要将的图象A.向左平移个单位长度
B.向右平移个单位长度C.向左平移个单位长度
D.向右平移个单位长度参考答案:B6.的值为(
)A.1 B.2 C.3 D.4参考答案:B略7.对于大于1的自然数m的三次幂可用奇数进行以下方式的“分裂”:……仿此,若的“分裂数”中有一个是59,则m的值为(
)A.7
B.8
C.9
D.10参考答案:B8.若则A.a<b<c B.a<c<b C.c<a<b D.b<c<a参考答案:B,因为,所以,选B.9.若直线(a>0,b>0)被圆截得的弦长为4,则的最小值为(
)A.
B.
C.
D.参考答案:C圆的标准方程为,所以圆心坐标为,半径为.因为直线被圆截得的弦长为4,所以线长为直径,即直线过圆心,所以,即,所以,所以,当且仅当,即,时取等号,所以的最小值为,选C.10.设函数,若,,则函数的零点的个数是(
) A.0 B.1 C.2 D.3 参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.不等式<log381的解集为.参考答案:(1,2)【考点】指、对数不等式的解法.【专题】函数思想;转化法;不等式的解法及应用.【分析】根据指数不等式和对数的运算法则进行求解即可.【解答】解:∵<log381,∴<4,即,∴x2﹣x<2,即x2﹣x﹣2<0,解得1<x<2,即不等式的解集为(1,2);故答案为:(1,2).【点评】本题主要考查不等式的求解,根据指数函数单调性的性质是解决本题的关键.12.甲、乙、丙三人中任选两名代表,则甲被选中的概率是
。参考答案:13.已知双曲线C的焦点在x轴上,渐近线方程是y=±2x,则C的离心率e=.参考答案:【考点】双曲线的简单性质.【分析】设双曲线的方程为﹣=1(a,b>0),求出渐近线方程,可得b=2a,由a,b,c的关系和离心率公式计算即可得到所求值.【解答】解:设双曲线的方程为﹣=1(a,b>0),由渐近线方程y=±x,可得=2,即b=2a,可得c==a,即有e==.故答案为:.14.已知函数有3个零点,则实数的取值范围是
.参考答案:15.已知数列{an}满足其中,设,若为数列{bn}中唯一最小项,则实数的取值范围是
.参考答案:(5,7)16.函数的值域是____________.参考答案:17.设且,若函数的反函数的图像经过定点,则点的坐标是___________.参考答案:(3,1)【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关函数与分析的基本知识.【知识内容】函数与分析/指数函数与对数函数/指数函数的性质与图像、反函数.【试题分析】因为函数经过定点(1,3),根据互为反函数的两个函数之间的关系知,函数的反函数经过定点(3,1),故答案为(3,1).三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在直角坐标系xOy中,直线l的参数方程为(t为参数,).以坐标原点为极点,x轴正半轴为极轴建立极坐标系(且两种坐标系取相同的长度单位),曲线C的极坐标方程为.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)设直线l与曲线C相交于A、B两点,若16,求角的取值范围.参考答案:(1)∵,∴,∴,……………(2分)即.故曲线C的直角坐标方程为.
………………(4分)(2)将直线的参数方程代入曲线C中得,∴,由题意,……………(6分)∴,……………(7分)∴,∴且,又,∴角的取值范围为或.………………(10分)19.(12分)如图,已知平面,平面,△为等边三角形,,为的中点.(1)求证:平面;(2)求证:平面平面;参考答案:20.已知抛物线y2=2px(p>0),过点C(一2,0)的直线l交抛物线于A,B两点,坐标原点为O,=12.(I)求抛物线的方程;(Ⅱ)当以AB为直径的圆与y轴相切时,求直线l的方程.参考答案:解:(Ⅰ)设l:x=my﹣2,代入y2=2px,可得y2﹣2pmy+4p=0.(?)设A(x1,y1),B(x2,y2),则y1+y2=2pm,y1y2=4p,则x1x2==4.∵?=12,∴x1x2+y1y2=12,即4+4p=12,得p=2,抛物线的方程为y2=4x.(Ⅱ)由(Ⅰ)(?)化为y2﹣4my+8=0.y1+y2=4m,y1y2=8.设AB的中点为M,则|AB|=2xm=x1+x2=m(y1+y2)﹣4=4m2﹣4,①又|AB|=|y1﹣y2|=,②由①②得(1+m2)(16m2﹣32)=(4m2﹣4)2,解得m2=3,m=±.∴直线l的方程为x+y+2=0,或x﹣y+2=0.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)设l:x=my﹣2,代入y2=2px,可得根与系数的关系,再利用?=12,可得x1x2+y1y2=12,代入即可得出.(Ⅱ)由(Ⅰ)(?)化为y2﹣4my+8=0.设AB的中点为M,可得|AB|=2xm=x1+x2=m(y1+y2)﹣4=4m2﹣4,又|AB|=|y1﹣y2|=,联立解出m即可得出.解答:解:(Ⅰ)设l:x=my﹣2,代入y2=2px,可得y2﹣2pmy+4p=0.(?)设A(x1,y1),B(x2,y2),则y1+y2=2pm,y1y2=4p,则x1x2==4.∵?=12,∴x1x2+y1y2=12,即4+4p=12,得p=2,抛物线的方程为y2=4x.(Ⅱ)由(Ⅰ)(?)化为y2﹣4my+8=0.y1+y2=4m,y1y2=8.设AB的中点为M,则|AB|=2xm=x1+x2=m(y1+y2)﹣4=4m2﹣4,①又|AB|=|y1﹣y2|=,②由①②得(1+m2)(16m2﹣32)=(4m2﹣4)2,解得m2=3,m=±.∴直线l的方程为x+y+2=0,或x﹣y+2=0.点评:本题考查了抛物线的标准方程及其性质、直线与抛物线相交问题转化为方程联立可得根与系数的关系、焦点弦长公式、弦长公式、直线与圆相切的性质、数量积运算,考查了推理能力与计算能力,属于中档题21.已知:圆过椭圆的两焦点,与椭圆有且仅有两个公共点:直线与圆相切,与椭圆相交于A,B两点记(1)求椭圆的方程;
(2)求的取值范围;
参考答案:解:(Ⅰ)由题意知2c=2,c=1因为圆与椭圆有且只有两个公共点,从而b=1.故a=所求椭圆方程为
……3分(Ⅱ)因为直线l:y=kx+m与圆相切所以原点O到直线l的距离=1,即:m
…
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高考物理总复习专题十电磁感应第2讲法拉第电磁感应定律、自感、涡流练习含答案
- 广东省阳东广雅学校高二信息技术 三维动画制作教案
- 2024年学年七年级语文下册 第二单元 告别抒怀 第4课《告别昨天的我》教案2 新疆教育版
- 2024-2025学年高中化学 第3章 第2节 课时3 铁的重要化合物教案 新人教版必修1
- 2024年届九年级历史上册 第5课 为争取“民主”“共和”而战教案2 北师大版
- 2023六年级数学上册 二 比和比例 测量旗杆高度教案 冀教版
- 2023六年级数学下册 三 解决问题的策略第三课时 解决问题的策略(练习课)教案 苏教版
- 文书模板-中医师承关系合同书
- 高考地理一轮复习第十二章环境与发展第一节环境问题与可持续发展课件
- 生活水泵房管理制度
- 2024年秋季人教版新教材七年级上册语文全册教案(名师教学设计简案)
- 有子女民政局常用协议离婚书格式2024年
- 中国介入医学白皮书(2021 版)
- 2024中华人民共和国农村集体经济组织法详细解读课件
- 人教新目标八年级上册英语《Unit 7 Will people have robots?》Section A-说课稿1
- 代运营合作服务协议
- 婚内财产协议书(2024版)
- 有限空间作业应急管理制度
- 2024全国普法知识考试题库及答案
- 化工企业中试阶段及试生产期间的产品能否对外销售
- 篮球智慧树知到期末考试答案章节答案2024年浙江大学
评论
0/150
提交评论