版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年贵州省遵义市市十五中高三数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.定义运算,则函数的图象大致为()A.B.C.D.参考答案:D2.设函数(其中为自然对数的底数,若函数至少存在一个零点,则实数的取值范围是(
)A.
B.
C.
D.参考答案:D点睛:利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.3.函数f(x)的导函数f′(x),对?x∈R,都有f′(x)>f(x)成立,若f(2)=e2,则不等式f(x)>ex的解是()A.(2,+∞) B.(0,1) C.(1,+∞) D.(0,ln2)参考答案:A【考点】6B:利用导数研究函数的单调性.【分析】构造函数g(x)=,利用导数可判断g(x)的单调性,再根据f(ln2)=2,求得g(ln2)=1,继而求出答案【解答】解:∵?x∈R,都有f′(x)>f(x)成立,∴f′(x)﹣f(x)>0,于是有()′>0,令g(x)=,则有g(x)在R上单调递增,∵不等式f(x)>ex,∴g(x)>1,∵f(2)=e2,∴g(2)==1,∴x>2,故选:A.4.已知△ABC和点M满足.若存在实数m使得成立,则m=()A.2 B.3 C.4 D.5参考答案:B【考点】向量的加法及其几何意义.【分析】解题时应注意到,则M为△ABC的重心.【解答】解:由知,点M为△ABC的重心,设点D为底边BC的中点,则==,所以有,故m=3,故选:B.【点评】本试题主要考查向量的基本运算,考查角平分线定理.5.设函数,则f(﹣7)+f(log312)=()A.7 B.9 C.11 D.13参考答案:A【考点】函数的值.【分析】由﹣7<1,1<log312求f(﹣7)+f(log312)的值.【解答】解:∵﹣7<1,1<log312,∴f(﹣7)+f(log312)=1+log39+=1+2+4=7,故选:A.【点评】本题考查了分段函数的应用及对数运算的应用.6.集合,集合,则等于……………(
)A.
B.
C.
D.参考答案:答案:C7.对于一切实数&当变化时,所有二次函数.的函数值恒为非负实数,则的最小值是()A.2
B.3
C.
D.参考答案:B8.定义行列式运算:.若将函数的图象向左平移个单位后,所得图象对应的函数为奇函数,则的最小值是(
)A.
B.
C.
D.参考答案:C9.设函数y=f(x)在区间(a,b)上的导函数为f′(x),f′(x)在区间(a,b)上的导函数为f″(x),若在区间(a,b)上f″(x)>0,则称函数f(x)在区间(a,b)上为“凹函数”,已知f(x)=x5﹣mx4﹣2x2在区间(1,3)上为“凹函数”,则实数m的取值范围为(
)A.(﹣∞,) B.[,5] C.(﹣∞,﹣3] D.(﹣∞,5]参考答案:C【考点】利用导数研究函数的单调性.【专题】导数的综合应用.【分析】本题根据二阶导数的定义及函数特征,研究原函数的二阶导数,求出m的取值范围,得到本题结论.【解答】解:∵f(x)=x5﹣mx4﹣2x2,∴f′(x)=x4﹣mx3﹣4x,∴f″(x)=x3﹣mx2﹣4.∵f(x)=x5﹣mx4﹣2x2在区间(1,3)上为“凹函数”,∴f″(x)>0.∴x3﹣mx2﹣4>0,x∈(1,3).∴,∵在(1,3)上单调递增,∴在(1,3)上满足:>1﹣4=﹣3.∴m≤﹣3.故答案为:C.【点评】本题考查了二阶导数和恒成立问题,本题难度不大,属于基础题.10.一个几何体的三视图如图所示,则该几何体的外接球的表面积为()A.36π B.8π C.π D.π参考答案:B【考点】由三视图求面积、体积.【分析】根据几何体的三视图得出该几何体是直三棱锥,且底面是等腰直角三角形,根据直三棱锥的外接球是对应直三棱柱的外接球,由外接球的结构特征,求出它的半径与表面积.【解答】解:根据几何体的三视图,得;该几何体是底面为等腰直角三角形,高为2的直三棱锥;如图所示;则该直三棱锥的外接球是对应直三棱柱的外接球,设几何体外接球的半径为R,∵底面是等腰直角三角形,∴底面外接圆的半径为1,∴R2=1+1=2,∴外接球的表面积是4πR2=8π.故选:B.二、填空题:本大题共7小题,每小题4分,共28分11.某三棱锥的三视图如图所示.则该三棱锥的体积为____.参考答案:2012.直线y=kx+3与圆(x﹣3)2+(y﹣2)2=4相交于M,N两点,若|MN|≥2,则k的取值范围是.参考答案:[﹣,0]【考点】直线与圆的位置关系.【分析】由圆的方程找出圆心坐标与半径r,利用点到直线的距离公式表示出圆心到直线的距离d,利用垂径定理及勾股定理表示出弦长|MN|,列出关于k的不等式,求出不等式的解集即可得到k的范围.【解答】解:由圆的方程得:圆心(3,2),半径r=2,∵圆心到直线y=kx+3的距离d=,|MN|≥2,∴2=2≥2,变形得:4﹣≥3,即8k2+6k≤0,解得:﹣≤k≤0,则k的取值范围是[﹣,0].故答案为:[﹣,0]13.甲、乙、丙三位同学,其中一位是班长,一位是体育委员,一位是学习委员,已知丙的年龄比学委的大,甲与体委的年龄不同,体委比乙年龄小.据此推断班长是
.参考答案:乙(1)根据“甲与体委的年龄不同,体委比乙年龄小”可得:丙是体委;
(2)根据“丙的年龄比学委的大,体委比乙年龄小”可得:乙>丙>学习委员,由此可得,乙不是学习委员,那么乙是班长.
答:班长是乙.
故答案为:乙.【点睛】此题关键是根据题干中体委与甲和乙的年龄关系,得出,体委是丙.然后才能根据丙与乙和学委的年龄关系得出,乙不是学委,从而得出乙是班长.14.已知四面体S﹣ABC中,SA=SB=2,且SA⊥SB,BC=,AC=,则该四面体的外接球的表面积为.参考答案:8π考点:球的体积和表面积;棱锥的结构特征.专题:计算题;空间位置关系与距离;球.分析:由勾股定理可得AB,再由勾股定理的逆定理,可得AC⊥BC,取AB的中点O,连接OS,OC,则有直角三角形的斜边的中线即为斜边的一半,可得球的半径,再由球的表面积公式即可计算得到.解答:解:由于SA=SB=2,且SA⊥SB,BC=,AC=,则AB=SA=2,由AB2=AC2+BC2,则AC⊥BC,取AB的中点O,连接OS,OC,则OA=OB=OC=OS=,则该四面体的外接球的球心为O,则球的表面积为S=4πr2=4π×()2=8π.故答案为:8π.点评:本题考查勾股定理的逆定理和直角三角形的斜边的中线即为斜边的一半,考查球的表面积的计算,求得球的半径是解题的关键.15.设正三棱柱中,,,则该正三棱柱外接球的表面积是
.参考答案:考点:1.正三棱柱的性质;2.球的切接问题.【名师点睛】本题考查正三棱柱的性质与球的切接问题,属中档题;球与旋转体的组合,通常通过作出它的轴截面解题;球与多面体的组合,通常通过多面体的一条侧棱和球心或“切点”、“接点”作出截面图,把空间问题化归为平面问题.16.关于x,y的二元一次方程的增广矩阵为.若Dx=5,则实数m=_____.参考答案:-2【分析】由题意,Dx5,即可求出m的值.【详解】由题意,Dx5,∴m=-2,故答案为-2.【点睛】本题考查x,y的二元一次方程的增广矩阵,考查学生的计算能力,比较基础.
17.设f(x)=,a,b∈R,ab≠0.若f(x)≤|f()|对一切x∈R恒成立,则①f()=0.②|f()|<|f()|.③f(x)既不是奇函数也不是偶函数.④f(x)的单调递增区间是[kπ+,kπ+](k∈Z).以上结论正确的是______(写出正确结论的编号).参考答案:①,③略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设,,试求曲线在矩阵变换下的曲线方程.参考答案:,…………………4分设是曲线上的任意一点,在矩阵变换下对应的点为.则,所以即……8分代入,得,即.即曲线在矩阵变换下的曲线方程为.……10分19.(本题满分12分)如图,三角形和梯形所在的平面互相垂直,,,是线段上一点,.
(Ⅰ)当时,求证:平面;(Ⅱ)求二面角的正弦值;(Ⅲ)是否存在点满足平面?并说明理由.参考答案:【知识点】线面平行的判定;线面垂直的条件;二面角求法.
G4
G5
G11(Ⅰ)证明:见解析;(Ⅱ);(Ⅲ)不存在点满足平面,理由:见解析.解析:(Ⅰ)取中点,连接,…1分
又,所以.因为,所以,四边形是平行四边形,…………2分所以因为平面,平面所以平面.…………4分(Ⅱ)因为平面平面,平面平面=,且,所以平面,所以,…………5分因为,所以平面.如图,
以为原点,建立空间直角坐标系.则,………6分是平面的一个法向量.设平面的法向量,则,即令,则,所以,所以,……………8分故二面角的正弦值为。……………9分.(Ⅲ)因为,所以与不垂直,………11分所以不存在点满足平面.…………12分【思路点拨】(Ⅰ)取中点,证明四边形是平行四边形即可;(Ⅱ)以为原点,直线AB为x轴,直线AF为z轴,建立空间直角坐标系.通过求平面ABF的法向量与平面BEF的法向量夹角余弦值,求二面角的正弦值;(Ⅲ)若存在点满足平面,则AE,由判断不存在点满足平面.20.设函数,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 04版知识产权许可与技术转让合同2篇
- 二零二四年餐厅商标转让合同
- 2024年度供应链融资合同及风险管理协议2篇
- 04版股权激励与期权行使合同
- 2024年度智能制造设备安装合同:含防雷技术的自动化生产线
- 二零二四年度停车场车位共享平台运营协议2篇
- 二零二四年度软件许可使用合同协议
- 2024年度版权许可合同标的版权类型与许可范围
- 二零二四年度BIM模型协同管理与共享服务合同
- 二零二四年度网络安全服务合同范本涉及企业防护
- 2024年1月上海市春季高考数学试卷试题真题(含答案详解)
- 统编(部编)版语文小学五年级上册-第八单元《单元解读》课件-(共26张)
- 幼儿园:中班社会《桌子底下的动物园》
- 宁波地区冬闲田利用现状及对策
- 管道系统消毒、冲洗记录填写范本
- 自动升降柱施工方案(1)
- 新视野大学英语第三版读写教程第二册Unit5
- 装修工程可行性研究报告(完整版)
- 安全文明施工二次策划方案(完整版)
- 湖南省城镇体系规划图集
- 江西省工伤职工停工留薪期分类目录
评论
0/150
提交评论