![高中物理人教版第五章曲线运动单元测试 课时作业第五章7生活中的圆周运动_第1页](http://file4.renrendoc.com/view/860824383b23ea7fc72f84a877d5a4e3/860824383b23ea7fc72f84a877d5a4e31.gif)
![高中物理人教版第五章曲线运动单元测试 课时作业第五章7生活中的圆周运动_第2页](http://file4.renrendoc.com/view/860824383b23ea7fc72f84a877d5a4e3/860824383b23ea7fc72f84a877d5a4e32.gif)
![高中物理人教版第五章曲线运动单元测试 课时作业第五章7生活中的圆周运动_第3页](http://file4.renrendoc.com/view/860824383b23ea7fc72f84a877d5a4e3/860824383b23ea7fc72f84a877d5a4e33.gif)
![高中物理人教版第五章曲线运动单元测试 课时作业第五章7生活中的圆周运动_第4页](http://file4.renrendoc.com/view/860824383b23ea7fc72f84a877d5a4e3/860824383b23ea7fc72f84a877d5a4e34.gif)
![高中物理人教版第五章曲线运动单元测试 课时作业第五章7生活中的圆周运动_第5页](http://file4.renrendoc.com/view/860824383b23ea7fc72f84a877d5a4e3/860824383b23ea7fc72f84a877d5a4e35.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
[目标定位]1.会分析火车转弯处、汽车过拱桥时向心力的来源,能解决生活中的圆周运动问题.2.了解航天器中的失重现象及原因.3.了解离心运动及物体做离心运动的条件,知道离心运动的应用及危害.一、铁路的弯道1.火车在弯道上的运动特点:火车在弯道上运动时实际上是在水平面内做圆周运动,由于其质量巨大,需要很大的向心力.2.向心力的来源及转弯速度(1)铁路的弯道通常是外高内低,火车依据规定的行驶速度行驶,转弯时向心力几乎完全由重力G和支持力FN的合力提供.(2)转弯速度:如图1所示,mgtan_θ=meq\f(v\o\al(2,0),R),解得v0=eq\r(gRtanθ)(规定速度).图1深度思考(1)火车通过转弯处要按照规定速度行驶.火车弯道处的规定速度与什么有关?(2)当行驶速度过大或过小时,火车会对哪侧轨道有侧压力?答案(1)火车转弯时,火车轮缘不受挤压力时,mgtanθ=meq\f(v\o\al(2,0),R),故v0=eq\r(gRtanθ).其中R为弯道半径,θ为轨道所在平面与水平面的夹角.故规定行驶速度由R及θ决定.(2)当v=eq\r(gRtanθ)时,火车转弯所需向心力仅由重力和支持力的合力提供,此时火车对内、外轨均无挤压作用,这是设计的限速状态.①当火车转弯速度过大,即v>eq\r(gRtanθ)时,火车会对外轨有侧压力.②当火车转弯速度过小,即v<eq\r(gRtanθ)时,火车会对内轨有侧压力.例1有一列重为100t的火车,以72km/h的速率匀速通过一个内外轨一样高的弯道,轨道半径为400m.(g取10m/s2)(1)试计算铁轨受到的侧压力大小;(2)若要使火车以此速率通过弯道,且使铁轨受到的侧压力为零,试计算路基倾斜角度θ的正切值.答案(1)1×105N(2)解析(1)v=72km/h=20m/s,外轨对轮缘的侧压力提供火车转弯所需要的向心力,所以有:FN=meq\f(v2,r)=eq\f(105×202,400)N=1×105N.由牛顿第三定律可知铁轨受到的侧压力大小等于1×105N.(2)火车过弯道,重力和铁轨对火车的支持力的合力正好提供向心力,如图所示,则mgtanθ=meq\f(v2,r).由此可得tanθ=eq\f(v2,rg)=.(1)解决这类题目首先要明确物体转弯做的是圆周运动,其次要找准物体做圆周运动的平面及圆心,理解向心力的来源是物体所受的合力.(2)火车在弯道处规定限速v=eq\r(gRtanθ)此时火车对轮缘无挤压力.当v>eq\r(gRtanθ)时,火车对外轨有挤压力.当v<eq\r(gRtanθ)时,火车对内轨有挤压力.二、拱形桥1.分析汽车过桥这类问题时应把握以下两点:(1)汽车在拱桥上的运动是竖直面内的圆周运动.(2)向心力来源(最高点和最低点):重力和桥面的支持力的合力提供向心力.2.汽车过凸形桥(如图2甲):汽车在凸形桥最高点时,加速度向下,合力向下,此时满足mg-FN=meq\f(v2,R),FN=mg-meq\f(v2,R),车对桥面的压力小于汽车的重力,汽车处于失重状态.图23.汽车过凹形桥(如图2乙):汽车在凹形桥最低点时,加速度向上,合力向上,此时满足FN-mg=meq\f(v2,R),FN=mg+meq\f(v2,R),车对桥面压力大于汽车重力,汽车处于超重状态.注意:凸形桥对汽车只能施加向上的支持力,故在桥的最高点,当汽车受到的支持力FN=0时,向心力mg=meq\f(v2,R),此时汽车的临界最大速度v临=eq\r(gR).(达到临界速度时,从最高点将做平抛运动)例2如图3所示,质量m=×104kg的汽车以不变的速率先后驶过凹形桥面和凸形桥面,两桥面的圆弧半径均为20m.如果桥面受到的压力不得超过×105N,则:图3(1)汽车允许的最大速度是多少?(2)若以(1)中所求速度行驶,汽车对桥面的最小压力是多少?(g取10m/s2)答案(1)10m/s(2)105N解析(1)汽车在凹形桥底部时,由牛顿第二定律得:FN-mg=meq\f(v2,r)代入数据解得v=10m/s.(2)汽车在凸形桥顶部时,由牛顿第二定律得:mg-FN′=eq\f(mv2,r)代入数据解得FN′=105N由牛顿第三定律知汽车对桥面的最小压力等于105N.在圆周运动最高点和最低点应用牛顿第二定律列方程时,要以加速度a的方向为正方向,所以在拱桥的最高点有mg-FN=meq\f(v2,r),在凹形桥的最低点有FN-mg=meq\f(v2,R).三、竖直面内的绳、杆模型问题1.轻绳模型(最高点,如图4所示):图4(1)绳(外轨道)施力特点:只能施加向下的拉力(或压力)(2)动力学方程:FT+mg=meq\f(v2,r)临界条件:FT=0,此时mg=meq\f(v2,r),则v=eq\r(gr)①v=eq\r(gr)时,拉力或压力为零.②v>eq\r(gr)时,物体受向下的拉力或压力.③v<eq\r(gr)时,物体不能(填“能”或“不能”)到达最高点.2.轻杆模型(最高点,如图5所示):图5(1)杆(双轨道)施力特点:既能施加向下的拉(压)力,也能施加向上的支持力.(2)动力学方程:当v>eq\r(gr)时,FN+mg=meq\f(v2,r),杆对球有向下的拉力,且随v增大而增大;当v=eq\r(gr)时,mg=meq\f(v2,r),杆对球无作用力;当v<eq\r(gr)时,mg-FN=meq\f(v2,r),杆对球有向上的支持力,且随速度减小而增大;当v=0时,FN=mg(临界情况).(3)杆类的临界速度为v临=0.例3长度为m的轻杆OA绕O点在竖直平面内做圆周运动,A端连着一个质量m=2kg的小球.求在下述的两种情况下,通过最高点时小球对杆的作用力的大小和方向(g取10m/s2):(1)杆做匀速圆周运动的转速为r/s.(2)杆做匀速圆周运动的转速为r/s.答案(1)小球对杆的拉力大小为138N,方向竖直向上.(2)小球对杆的压力大小为10N,方向竖直向下.解析小球在最高点的受力如图所示:(1)杆的转速为r/s时,ω=2π·n=4πrad/s由牛顿第二定律得:F+mg=mLω2故小球所受杆的作用力F=mLω2-mg=2××42×π2-10)N≈138N即杆对小球提供了138N的拉力.由牛顿第三定律知,小球对杆的拉力大小为138N,方向竖直向上.(2)杆的转速为r/s时,ω′=2π·n′=πrad/s.同理可得小球所受杆的作用力F=mLω′2-mg=2××π2-10)N≈-10N.力F为负值表示它的方向与受力分析中所假设的方向相反,故小球对杆的压力大小为10N,方向竖直向下.(1)在最高点时,杆对球的弹力和球的重力的合力充当向心力.(2)杆对球可能提供支持力,也可能提供拉力,由球的加速度决定.针对训练一细绳与水桶相连,水桶中装有水,水桶与细绳一起在竖直平面内做圆周运动,如图6所示,水的质量m=kg,水的重心到转轴的距离l=50cm.(g取10m/s2)图6(1)若在最高点水不流出来,求桶的最小速率;(2)若在最高点水桶的速率v=3m/s,求水对桶底的压力.答案(1)m/s(2)4N解析分别以水桶和桶中的水为研究对象,对它们进行受力分析,找出它们做圆周运动所需向心力的来源,根据牛顿运动定律建立方程求解.(1)以水桶中的水为研究对象,在最高点恰好不流出来,说明水的重力恰好提供其做圆周运动所需的向心力,此时桶的速率最小.此时有:mg=meq\f(v\o\al(2,0),r),则所求的最小速率为:v0=eq\r(gr)≈m/s.(2)此时桶底对水有一向下的压力,设为FN,则由牛顿第二定律有:FN+mg=meq\f(v2,r),代入数据可得:FN=4N.由牛顿第三定律得,水对桶底的压力FN′=4N.绳的施力特点:只能施加拉力,不能施加支持力,故绳拉物体在最高点的临界条件FT=0,此时小球有最小速度v=eq\r(gr).四、航天器中的失重现象离心运动1.航天器在近地轨道的运动(1)对于航天器,重力充当向心力,满足的关系为mg=meq\f(v2,R),航天器的速度v=eq\r(gR).(2)对于航天员,由重力和座椅的支持力提供向心力,满足的关系为mg-FN=eq\f(mv2,R).当v=eq\r(gR)时,座舱对宇航员的支持力FN=0,宇航员处于完全失重状态.2.对失重现象的认识航天器内的任何物体都处于完全失重状态,但并不是物体不受重力.正因为受到重力作用才使航天器连同其中的宇航员环绕地球转动.3.离心运动(1)定义:物体沿切线飞出或做逐渐远离圆心的运动.(2)实质:离心运动的实质是物体惯性的表现.做圆周运动的物体,总有沿着圆周切线飞出去的趋势,之所以没有飞出去,是因为受到向心力的作用.从某种意义上说,向心力的作用是不断地把物体从圆周运动的切线方向拉到圆周上来.一旦作为向心力的合外力突然消失或不足以提供所需向心力,物体就会发生离心运动.(3)离心运动、近心运动的判断:物体做圆周运动、离心运动还是近心运动,由实际提供的向心力Fn与所需向心力(meq\f(v2,r)或mrω2)的大小关系决定.如图7所示.图7①若Fn=mrω2(或meq\f(v2,r)),即“提供”满足“需要”,物体做圆周运动.②若Fn>mrω2(或meq\f(v2,r)),即“提供”大于“需要”,物体做半径变小(填“大”或“小”)的近心运动.③若Fn<mrω2(或meq\f(v2,r)),即“提供”不足,物体做半径变大(填“大”或“小”)的离心运动.④若Fn=0,物体做离心运动,并沿切线方向飞出.深度思考如图8所示,链球比赛中,高速旋转的链球被放手后会飞出.汽车高速转弯时,若摩擦力不足,汽车会滑出路面.图8(1)链球飞出、汽车滑出是因为受到了离心力吗?(2)物体做离心运动的条件是什么?答案(1)不是,离心力实际并不存在.(2)当向心力突然消失或合外力不足以提供所需向心力时,物体做离心运动.例4下列有关洗衣机脱水筒的脱水原理说法正确的是()A.水滴受离心力作用,而沿背离圆心的方向甩出B.水滴受到向心力,由于惯性沿切线方向甩出C.水滴受到的离心力大于它受到的向心力,从而沿切线方向甩出D.水滴与衣服间的附着力小于它所需的向心力,于是沿切线方向甩出答案D解析随着脱水筒的转速增加,水滴所需的向心力越来越大,当转速达到一定值,水滴所需的向心力F=meq\f(v2,r)大于水滴与衣服间的附着力时,水滴就会做离心运动,沿切线方向被甩出.离心现象的三点注意:(1)在离心现象中并不存在离心力,是外力不足以提供物体做圆周运动所需的向心力而引起的,是惯性的一种表现形式.(2)做离心运动的物体,并不是沿半径方向向外远离圆心.(3)物体的质量越大,速度越大(或角速度越大),半径越小时,圆周运动所需要的向心力越大,物体就越容易发生离心现象.1.(交通工具的转弯问题)赛车在倾斜的轨道上转弯如图9所示,弯道的倾角为θ,半径为r,则赛车完全不靠摩擦力转弯的速率是(设转弯半径水平)()图9\r(grsinθ) \r(grcosθ)\r(grtanθ) \r(grcotθ)答案C解析设赛车的质量为m,赛车受力分析如图所示,可见:F合=mgtanθ,而F合=meq\f(v2,r),故v=eq\r(grtanθ).2.(汽车过桥问题)城市中为了解决交通问题,修建了许多立交桥.如图10所示,桥面是半径为R的圆弧形的立交桥AB横跨在水平路面上,一辆质量为m的小汽车,在A端冲上该立交桥,小汽车到达桥顶时的速度大小为v1,若小汽车在上桥过程中保持速率不变,则()图10A.小汽车通过桥顶时处于失重状态B.小汽车通过桥顶时处于超重状态C.小汽车在上桥过程中受到桥面的支持力大小为FN=mg-meq\f(v\o\al(2,1),R)D.小汽车到达桥顶时的速度必须大于eq\r(gR)答案A解析由圆周运动知识知,小汽车通过桥顶时,其加速度方向向下,由牛顿第二定律得mg-FN=meq\f(v\o\al(2,1),R),解得FN=mg-meq\f(v\o\al(2,1),R)<mg,故其处于失重状态,A正确,B错误;FN=mg-meq\f(v\o\al(2,1),R)只在小汽车通过桥顶时成立,而其上桥过程中的受力情况较为复杂,C错误;由mg-FN=meq\f(v\o\al(2,1),R),FN≥0解得v1≤eq\r(gR),D错误.3.(离心运动问题)如图11所示是摩托车比赛转弯时的情形,转弯处路面常是外高内低,摩托车转弯有一个最大安全速度,若超过此速度,摩托车将发生滑动.关于摩托车滑动的问题,下列论述正确的是()图11A.摩托车一直受到沿半径方向向外的离心力作用B.摩托车所受外力的合力小于所需的向心力C.摩托车将沿其线速度的方向沿直线滑去D.摩托车将沿其半径方向沿直线滑去答案B解析摩托车只受重力、地面支持力和地面的摩擦力作用,没有离心力,A项错误;摩托车正常转弯时可看作是做匀速圆周运动,所受的合力等于向心力,如果向外滑动,说明提供的向心力即合力小于需要的向心力,B项正确;摩托车将在沿线速度方向与半径向外的方向之间做离心曲线运动,C、D项错误.4.(竖直面内的圆周运动)(多选)如图12所示,半径为L的圆管轨道(圆管内径远小于轨道半径)竖直放置,管内壁光滑,管内有一个小球(小球直径略小于管内径)可沿管转动,设小球经过最高点P时的速度为v,则()图12A.v的最小值为eq\r(gL)B.v若增大,球所需的向心力也增大C.当v由eq\r(gL)逐渐减小时,轨道对球的弹力也减小D.当v由eq\r(gL)逐渐增大时,轨道对球的弹力也增大答案BD解析由于小球在圆管中运动,最高点速度可为零,A错误;根据向心力公式有F=meq\f(v2,r),v若增大,球所需的向心力一定增大,B正确;因为圆管既可提供向上的支持力也可提供向下的压力,当v=eq\r(gL)时,圆管受力为零,故v由eq\r(gL)逐渐减小时,轨道对球的弹力增大,C错误;v由eq\r(gL)逐渐增大时,轨道对球的弹力也增大,D正确.题组一交通工具的转弯问题1.关于铁路转弯处内轨和外轨间的高度关系,下列说法中正确的是()A.内轨和外轨一样高,以防列车倾倒B.因为列车在转弯处有向内倾倒的可能,故一般使内轨高于外轨,以防列车倾倒C.外轨比内轨略高,这样可以使列车顺利转弯,减少车轮与铁轨间的挤压D.以上说法都不对答案C解析列车转弯时实际是在做圆周运动,若内轨和外轨一样高,则列车做圆周运动的向心力由外轨对轮缘的弹力提供,但由于列车质量太大,轮缘与外轨间的弹力太大,铁轨与车轮极易受损,可能造成翻车事故;若转弯处外轨比内轨略高,此时列车转弯所需的向心力可由列车的重力和铁轨的支持力的合力提供.故选项C正确.2.(多选)公路急转弯处通常是交通事故多发地带.如图1,某公路急转弯处是一圆弧,当汽车行驶的速率为v0时,汽车恰好没有向公路内外两侧滑动的趋势.则在该弯道处,()1A.路面外侧高内侧低B.车速只要低于v0,车辆便会向内侧滑动C.车速虽然高于v0,但只要不超出某一最高限度,车辆便不会向外侧滑动D.当路面结冰时,与未结冰时相比,v0的值变小答案AC解析当汽车行驶的速率为v0时,汽车恰好没有向公路内外两侧滑动的趋势,即不受静摩擦力,此时由重力和支持力的合力提供向心力,所以路面外侧高内侧低,选项A正确;当车速低于v0时,需要的向心力小于重力和支持力的合力,汽车有向内侧运动的趋势,但并不会向内侧滑动,静摩擦力向外侧,选项B错误;当车速高于v0时,需要的向心力大于重力和支持力的合力,汽车有向外侧运动的趋势,静摩擦力向内侧,速度越大,静摩擦力越大,只有静摩擦力达到最大以后,车辆才会向外侧滑动,选项C正确;由mgtanθ=meq\f(v\o\al(2,0),r)可知,v0的值只与斜面倾角和圆弧轨道的半径有关,与路面的粗糙程度无关,选项D错误.3.在高速公路的拐弯处,路面建造得外高内低,即当车向右拐弯时,司机左侧的路面比右侧的要高一些,路面与水平面间的夹角为θ,设拐弯路段是半径为R的圆弧,要使车速为v时车轮与路面之间的横向(即垂直于前进方向)摩擦力等于零,θ应等于()A.sinθ=eq\f(v2,Rg) B.tanθ=eq\f(v2,Rg)C.sin2θ=eq\f(2v2,Rg) D.tanθ=eq\f(Rg,v2)答案B解析当车轮与路面的横向摩擦力等于零时,汽车受力如图所示,则有:FNsinθ=meq\f(v2,R),FNcosθ=mg,解得:tanθ=eq\f(v2,Rg),故B正确.题组二航天器中的失重现象及离心运动4.(多选)2023年6月11日至26日,“神舟十号”飞船圆满完成了太空之行,期间还成功进行了人类历史上第二次太空授课,女航天员王亚平做了大量失重状态下的精美物理实验.关于失重状态,下列说法正确的是()A.航天员仍受重力的作用B.航天员受力平衡C.航天员所受重力等于所需的向心力D.航天员不受重力的作用答案AC解析做匀速圆周运动的空间站中的航天员,所受重力全部提供其做圆周运动的向心力,处于完全失重状态,并非航天员不受重力作用,A、C正确,B、D错误.5.如图2洗衣机的甩干筒在转动时有一衣物附在筒壁上,则此时()图2A.衣物受到重力、筒壁的弹力、摩擦力和向心力B.衣物随筒壁做圆周运动的向心力是摩擦力C.筒壁的弹力随筒的转速的增大而减小D.水与衣物间的附着力小于水做圆周运动所需的向心力,水从筒壁小孔甩出答案D6.在世界一级方程式锦标赛中,赛车在水平路面上转弯时,常常在弯道上冲出跑道,其原因是()A.是由于赛车行驶到弯道时,运动员未能及时转动方向盘造成的B.是由于赛车行驶到弯道时,没有及时加速造成的C.是由于赛车行驶到弯道时,没有及时减速造成的D.是由于在弯道处汽车受到的摩擦力比在直道上小造成的答案C解析赛车在水平弯道上行驶时,摩擦力提供向心力,而且速度越大,需要的向心力越大,如不及时减速,当摩擦力不足以提供向心力时,赛车就会做离心运动,冲出跑道,故C正确.题组三竖直面内的圆周运动问题7.长为L的细绳,一端系一质量为m的小球,另一端固定于某点,当绳竖直时小球静止,再给小球一水平初速度v0,使小球在竖直平面内做圆周运动,并且刚好能过最高点.则下列说法中正确的是()A.小球过最高点时速度为零B.小球开始运动时绳对小球的拉力为meq\f(v\o\al(2,0),L)C.小球过最高点时绳对小球的拉力为mgD.小球过最高点时速度大小为eq\r(gL)答案D8.图3所示为模拟过山车的实验装置,小球从左侧的最高点释放后能够通过竖直圆轨道而到达右侧.若竖直圆轨道的半径为R,要使小球能顺利通过竖直圆轨道,则小球通过竖直圆轨道的最高点时的角速度最小为()图3\r(gR)B.2eq\r(gR)\r(\f(g,R))\r(\f(R,g))答案C解析小球能通过竖直圆轨道的最高点的临界状态为重力提供向心力,即mg=mω2R,解得ω=eq\r(\f(g,R)),选项C正确.9.一辆满载的卡车在起伏的公路上匀速行驶,如图4所示,由于轮胎过热,容易爆胎.爆胎可能性最大的地段是()图4A.A处 B.B处C.C处 D.D处答案D解析在A、B、C、D各点均由重力与支持力的合力提供向心力,爆胎可能性最大的地段为轮胎与地面的挤压力最大处.在A、C两点有mg-F=meq\f(v2,R),则F=mg-meq\f(v2,R)<mg;在B、D两点有F-mg=meq\f(v2,R),则F=mg+meq\f(v2,R)>mg,且R越小,F越大,故FD最大,即D处最容易爆胎.10.杂技演员表演“水流星”,在长为m的细绳的一端,系一个与水的总质量为m=kg的盛水容器,以绳的另一端为圆心,在竖直平面内做圆周运动,如图5所示,若“水流星”通过最高点时的速率为4m/s,则下列说法正确的是(g=10m/s2)()图5A.“水流星”通过最高点时,有水从容器中流出B.“水流星”通过最高点时,绳的张力及容器底部受到的压力均为零C.“水流星”通过最高点时,处于完全失重状态,不受力的作用D.“水流星”通过最高点时,绳子的拉力大小为5N答案B解析水流星在最高点的临界速度v=eq\r(gL)=4m/s,由此知绳的拉力恰为零,且水恰不流出.故选B.11.(多选)如图6所示,小球m在竖直放置的光滑的圆形管道内做圆周运动,下列说法正确的是()图6A.小球通过最高点时的最小速度是eq\r(Rg)B.小球通过最高点时的最小速度为零C.小球在水平线ab以下的管道中运动时外侧管壁对小球一定无作用力D.小球在水平线ab以下的管道中运动时外侧管壁对小球一定有作用力答案BD解析圆环外侧、内侧都可以对小球提供弹力,小球在水平线ab以下时,必须有指向圆心的力提供向心力,就是外侧管壁对小球的作用力,故B、D正确.12.一辆质量为800kg的汽车在圆弧半径为50m的拱桥上行驶.(g取10m/s2)(1)若汽车到达桥顶时速度为v1=5m/s,汽车对桥面的压力是多大?(2)汽车以多大速度经过桥顶时,恰好对桥面没有压力?(3)汽车对桥面的压力过小是不安全的,因此汽车过桥时的速度不能过大.对于同样的车速,拱桥圆弧的半径大些比较安全,还是小些比较安全?(4)如果拱桥的半径增大到与地球半径一样大,汽车要在桥面上腾空,速度至少为多大?(已知地球半径为6400km)答案(1)7600N(2)m/s(3)半径大些比较安全(4)8000m/s解析如图所示,汽车到达桥顶时,受到重力mg和桥面对它的支持力FN的作用.(1)汽车对桥面的压力大小等于桥面对汽车的支持力FN.汽车过桥时做圆周运动,重力和支持力的合力提供向心力,根据牛顿第二定律有mg-FN=meq\f(v\o\al(2,1),R)所以FN=mg-meq\f(v\o\al(2,1),R)=7600N故汽车对桥面的压力为7600N.(2)汽车经过桥顶时恰好对桥面没有压力,则FN=0,即汽车做圆周运动的向心力完全由其自身重力来提供
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学生创业项目经管类有哪些
- 五千以内加减混合两步运算过关监控例题带答案
- 在校大学生适合创业的项目
- 四川大学生在家创业项目
- 小学三年级数学五千以内加减混合两步运算综合监控题
- 冬季施工方案编写技巧
- 冬季施工方案外架拆除
- 全国大学生创业网项目概述怎么写
- 伊宁市冬季施工工地施工方案
- 11.2功率 同步练习(含解析)-八年级物理下册(人教版)
- 大型活动标准化执行手册
- (完整版)电梯的钢结构施工方案
- 中国近现代史纲要ppt全共64页课件
- 工程勘察设计收费标准快速计算表(EXCEL)
- 甲基乙基酮2-丁酮MSDS危险化学品安全技术说明书
- 腰椎间盘突出症(腰痹病)中医临床路径
- 教学团队建设总结报告
- 装饰施工进度计划网络图及横道图
- 【大学】挤出管材(P64)ppt课件
- 实木电脑桌书桌安装图
- 大学物理课后习题答案北京邮电大学出版社
评论
0/150
提交评论