版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省日照市莒县浮来山镇二十里中学2021-2022学年高一数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.不等式-x2-x+2<0的解集为()A、{x|x<-2或x>1}B、{x|-2<x<1}C、{x|x<-1或x>2}D、{x|-1<x<2}参考答案:A试题分析:不等式变形为,所以不等式解集为{x|x<-2或x>1}考点:一元二次不等式解法2.某苗圃基地为了解基地内甲、乙两块地种植同一种树苗的长势情况,从两块地各随机抽取了10株树苗,用茎叶图表示上述两组树苗高度的数据,对两块地抽取树苗的高度的平均数甲,乙和方差进行比较,下面结论正确的是()A.甲>乙,乙地树苗高度比甲地树苗高度更稳定B.甲<乙,甲地树苗高度比乙地树苗高度更稳定C.甲<乙,乙地树苗高度比甲地树苗高度更稳定D.甲>乙,甲地树苗高度比乙地树苗高度更稳定参考答案:B【考点】茎叶图.【专题】对应思想;定义法;概率与统计.【分析】根据茎叶图,计算甲、乙的平均数,再根据数据的分布情况与方差的概念,比较可得答案.【解答】解:根据茎叶图有:①甲地树苗高度的平均数为=28cm,乙地树苗高度的平均数为=35cm,∴甲地树苗高度的平均数小于乙地树苗的高度的平均数;②甲地树苗高度分布在19~41之间,且成单峰分布,且比较集中在平均数左右,乙地树苗高度分布在10~47之间,不是明显的单峰分布,相对分散些;∴甲地树苗高度与乙地树苗高度比较,方差相对小些,更稳定些;故选:B.【点评】本题考查了利用茎叶图估计平均数与方差的应用问题,关键是正确读出茎叶图,并分析数据,是基础题.3.M(为圆内异于圆心的一点,则直线与该圆的位置关系(
)
A.相切
B.相交
C.相离
D.相切或相交参考答案:C4.函数的零点所在的区间是()A.(0,1) B. C. D.参考答案:B【分析】首先判断出函数的单调性,根据零点存在定理求得结果.【详解】由题意知:在上单调递增当时,;;;;当时,可知:零点所在区间为:【点睛】本题考查利用零点存在定理判断零点所在区间,属于基础题.5.若函数f(x)=a﹣x(a>0,a≠1)是定义域为R的增函数,则函数f(x)=loga(x+1)的图象大致是() A. B. C. D.参考答案:D【考点】指数函数的单调性与特殊点;对数函数的图象与性质. 【专题】数形结合. 【分析】先由条件得a的取值范围,再结合对数函数的单调性及定义域来判断函数f(x)=loga(x+1)的图象大致位置即可. 【解答】解:∵f(x)=a﹣x(a>0,a≠1), ∴f(x)=, ∵定义域为R的增函数, ∴, ∴0<a<1, ∴函数f(x)=loga(x+1)是定义域为(﹣1,+∞)的减函数, 故选D. 【点评】本题主要考查了指数函数的单调性与特殊点、对数函数的图象,判断时要注意定义域优先的原则. 6.函数的定义域为,值域为,则点表示的图形可以是(
▲
)
参考答案:B略7.如果不等式的解集为,那么函数的大致图象是(
)
参考答案:C8.如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是()A. B. C. D.参考答案:D【考点】L!:由三视图求面积、体积.【分析】由三视图知几何体的直观图是半个圆锥,再根据其中正视图是腰长为2的等腰三角形,我们易得圆锥的底面直径为2,母线为为2,故圆锥的底面半径为1,高为,代入圆锥体积公式即可得到答案.【解答】解:由三视图知几何体的直观图是半个圆锥,又∵正视图是腰长为2的等腰三角形∴r=1,h=∴故选:D.9.已知向量=(4,2),向量=(x,3),且//,则x=(
)A.9
B.6
C.5
D.3
参考答案:B略10.在△ABC中,,则B的取值范围是(
)A. B.C.或 D.或参考答案:B【分析】设(),利用余弦定理建立关于x的函数,从而求出B的范围.【详解】解:设,则,由余弦定理可得,,根据余弦函数的性质可知,,故选B.【点睛】本题考查三角形已知两边求角范围,余弦定理的应用,三角形的构成条件,基本不等式,考查学生的转化能力和运算能力,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分11.(5分)直线x+2y=0被曲线x2+y2﹣6x﹣2y﹣15=0所截得的弦长等于
.参考答案:4考点: 直线与圆的位置关系.专题: 综合题;数形结合.分析: 根据圆的方程找出圆心坐标和半径,过点A作AC⊥弦BD,可得C为BD的中点,根据勾股定理求出BC,即可求出弦长BD的长.解答: 解:过点A作AC⊥弦BD,垂足为C,连接AB,可得C为BD的中点.由x2+y2﹣6x﹣2y﹣15=0,得(x﹣3)2+(y﹣1)2=25.知圆心A为(3,1),r=5.由点A(3,1)到直线x+2y=0的距离AC==.在直角三角形ABC中,AB=5,AC=,根据勾股定理可得BC===2,则弦长BD=2BC=4.故答案为:4点评: 本题考查学生灵活运用垂径定理解决实际问题的能力,灵活运用点到直线的距离公式及勾股定理化简求值,会利用数形结合的数学思想解决数学问题,是一道综合题.12.若在(-∞,0)∪(0,+∞)上为奇函数,且在(0,+∞)上为增函数,,则不等式的解集为________.参考答案:(-2,0)∪(0,2)13.对于一个底边在轴上的正三角形,边长,,采用斜二测画法做出其直观图,则其直观图的面积是
。参考答案:14.=__________参考答案:15.设全集U=R,集合,,若,则实数的取值范围是________参考答案:16.已知圆C的方程为,过原点作直线L,则L与圆C有公共点时,直线的斜率范围为
.参考答案:17.用列举法表示集合:= 。参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数.(1)判断并证明函数的奇偶性;(2)判断当时函数的单调性,并用定义证明;(3)若定义域为(-1,1),解不等式.参考答案:解:(1)函数为奇函数.证明如下:定义域为又为奇函数
(2)函数在(-1,1)为单调函数.证明如下:任取,则,即故在(-1,1)上为增函数(3)由(1)、(2)可得则
解得:所以,原不等式的解集为19.(10分)设全集为U=R,集合A={x|(x+3)(4﹣x)≤0},B={x|log2(x+2)<3}(1)求A∩?UB(2)已知C={x|2a<x<a+1},若C?B,求实数a的取值范围.参考答案:考点: 集合的包含关系判断及应用;交、并、补集的混合运算.专题: 计算题;集合.分析: (1)首先化简集合A,B,再求A∩CUB;(2)注意讨论C是否是空集,从而解得.解答: 解(1)∵(x+3)(4﹣x)≤0,∴A=(﹣∞,﹣3]∪[4,+∞),∵0<x+2<8,∴B=(﹣2,6),∴A∩CUB=(﹣∞,﹣3]∪[6,+∞);(2)①当2a≥a+1,即a≥1时,C=?,成立;②当2a<a+1,即a<1时,C=(2a,a+1)?(﹣2,6),∴得﹣1≤a≤5,∴﹣1≤a<1.综上所述,a的取值范围为[﹣1,+∞).点评: 本题考查了集合的化简与运算,属于基础题.20.已知数列{an}的前n项和(1)若三角形的三边长分别为,求此三角形的面积;(2)探究数列{an}中是否存在相邻的三项,同时满足以下两个条件:①此三项可作为三角形三边的长;②此三项构成的三角形最大角是最小角的2倍.若存在,找出这样的三项;若不存在,说明理由.参考答案:(1)(2)见解析【分析】(1)数列的前n项和求出,,遂得出三角形三边边长,利用余弦定理求解三角形的面积.(2)假设数列存在相邻的三项满足条件,因为,设三角形三边长分别是n,,,,三个角分别是,,,利用正弦定理,余弦定理,验证此三角形的最大角是最小角的2倍,然后推出结果.【详解】解:(1)数列的前n项和.当时,,当时,,又时,,所以,不妨设△ABC三边长为,,,所以所以(2)假设数列存在相邻的三项满足条件,因为,设三角形三边长分别是n,,,,三个角分别是,,由正弦定理:,所以由余弦定理:,即
化简得:,所以:或舍去
当时,三角形的三边长分别是4,5,6,可以验证此三角形的最大角是最小角的2倍.所以数列中存在相邻的三项4,5,6,满
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏护理职业学院《数据库系统原理(双语)》2023-2024学年第一学期期末试卷
- 黄山职业技术学院《药事管理学》2023-2024学年第一学期期末试卷
- 湖南劳动人事职业学院《建筑构造Ⅰ》2023-2024学年第一学期期末试卷
- 湖北生物科技职业学院《金属熔炼与铸造》2023-2024学年第一学期期末试卷
- 【物理】《大气压强》(教学设计)-2024-2025学年人教版(2024)初中物理八年级下册
- 高考物理模拟测试题(附带答案)
- 重庆师范大学《软件测试课设》2023-2024学年第一学期期末试卷
- 重庆电信职业学院《扩声技术1》2023-2024学年第一学期期末试卷
- 浙江中医药大学《嵌入式系统开发及应用》2023-2024学年第一学期期末试卷
- 浙江机电职业技术学院《空间信息系统》2023-2024学年第一学期期末试卷
- 给志愿者培训
- 2023年贵州黔东南州州直机关遴选公务员笔试真题
- 心脑血管疾病预防课件
- 中药饮片验收培训
- DB35T 1036-2023 10kV及以下电力用户业扩工程技术规范
- 中国移动自智网络白皮书(2024) 强化自智网络价值引领加速迈进L4级新阶段
- 亚马逊合伙运营协议书模板
- 2024年6月青少年机器人技术等级考试理论综合-三级试题(真题及答案)
- Unit 4 同步练习人教版2024七年级英语上册
- 人教版数学三年级下册《简单的小数加、减法》说课稿(附反思、板书)课件
- 广东省深圳市2023年中考英语试题(含答案与解析)
评论
0/150
提交评论