




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年河北省廊坊市三河齐心庄中学高三数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.将函数的图象上各点的纵坐标不变,横坐标扩大到原来的2倍,所得函数g(x)图象的一个对称中心可以是()A. B. C. D.参考答案:C【考点】函数y=Asin(ωx+φ)的图象变换.【专题】计算题;数形结合;数形结合法;三角函数的图像与性质.【分析】根据y=Asin(ωx+?)的图象变换规律可得所得图象对应的函数为y=sin(x+),由x+=kπ,k∈z,可得对称中心的横坐标,从而得出结论.【解答】解:∵,∴由,∴,令.故选:C.【点评】本题主要考查y=Asin(ωx+?)的图象变换规律,正弦函数的对称中心,属于中档题.2.复数的虚部为()A.i B.﹣i C. D.﹣参考答案:C【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、虚部的定义即可得出.【解答】解:复数===﹣+i的虚部为.故选:C.3.从5名医生(3男2女)中随机等可能地选派两名医生,则恰选得一名男医生和一名女医生的概率为A.
B.
C.
D.参考答案:D4.用数字1,2,3,4,5组成无重复数字的五位数,则1不在首位,3不在百位的五位数共有(
)A.54
B.72
C.96
D.78参考答案:D5.若随机变量X服从正态分布N(μ,σ2)(σ>0),则P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974,已知某随机变量Y近似服从正态分布N(2,σ2),若P(Y>3)=0.1587,则P(Y<0)=()A.0.0013 B.0.0228 C.0.1587 D.0.5参考答案:B【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据3σ原则,即可得出结论.【解答】解:∵P(Y>3)=0.1587,P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,∴P(Y<0)=(1﹣0.9544)=0.0228,故选B.6.设函数f(x)=logax(a>0且a≠1)的定义域为(,+∞),则在整个定义域上,f(x)<2恒成立的充要条件充是(
)A.0<a<
B.0<a≤
C.a>且a≠1
D.a≥且a≠1参考答案:B7.
若
=,
=,其中,则一定有(
)
A.
^
B.与共线C.与的夹角为
D.|
|=|
|参考答案:答案:A8.若集合M={y|y=},集合,则下列各式正确的是
(
)
A.
B.
C.
D.参考答案:A略9.已知直线l1:(1﹣a)x+ay﹣2=0,l2:ax+(2a+1)y+3=0,则“a=﹣2”是“l1⊥l2”成立的()A.充分不变要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件参考答案:A考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据直线垂直的等价条件得到(1﹣a)a+a(2a+1)=0,然后利用充分条件和必要条件的定义进行判断即可.解答:解:若l1⊥l2,则(1﹣a)a+a(2a+1)=0,即a2+2a=0,解得a=0或a=﹣2,则“a=﹣2”是“l1⊥l2”成立的充分不必要条件,故选:A点评:本题主要考查充分条件和必要条件的判断,根据直线垂直的等价条件是解决本题的关键.10.在△ABC中,BC:AB=2:,∠B=30°,则∠C=()A.30° B.45° C.60° D.75°参考答案:C【考点】余弦定理.【分析】利用余弦定理与勾股定理的逆定理即可得出.【解答】解:∵BC:AB=2:,不妨取a=2,c=.∴b2=﹣2×=1.∴b2+c2=a2,∴∠A=90°.∴∠C=60°.故选:C.【点评】本题考查了余弦定理与勾股定理的逆定理,考查了推理能力与计算能力,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分11.若,则
参考答案:12.曲线y=2x﹣lnx在点(1,2)处的切线方程是.参考答案:x﹣y+1=0【考点】利用导数研究曲线上某点切线方程.【专题】计算题.【分析】求出曲线的导函数,把x=1代入即可得到切线的斜率,然后根据(1,2)和斜率写出切线的方程即可.【解答】解:由函数y=2x﹣lnx知y′=2﹣,把x=1代入y′得到切线的斜率k=2﹣=1则切线方程为:y﹣2=(x﹣1),即x﹣y+1=0.故答案为:x﹣y+1=0【点评】考查学生会根据曲线的导函数求切线的斜率,从而利用切点和斜率写出切线的方程.13.已知向量与的夹角为,且,,若,且,则实数的值为__________.参考答案:14.以双曲线的右焦点为圆心,并与其渐近线相切的圆的标准方程是
参考答案:略15.已知的展开式中的系数与的展开式中的系数相等,且则_______________________________。参考答案:16.函数的图像在处的切线方程为_______.参考答案:
17.在正三角形ABC的底边BC上取中点M,在与底边BC相邻的两条边BA和CA上分别取点P、Q,若线段PQ对M的张角∠PMQ为锐角,则称点P、Q亲密.若点P、Q在BA、CA上的位置随机均匀分布,则P、Q亲密的概率称为正三角形的亲密度.则正三角形的亲密度为.参考答案:【考点】F4:进行简单的合情推理.【分析】设AB=BC=CA=2,设BP=x,0≤x≤2,过M作PM的垂线,交AC于R,当Q落在线段AR内部及A点上时,P与Q是亲密的,记AR的长度为y=f(x),由PM2+MR2=RP2及余弦定理得y=,由此利用定积分能求出正三角形的亲密度.【解答】解:设AB=BC=CA=2,设BP=x,0≤x≤2,过M作PM的垂线,交AC于R,当Q落在线段AR内部及A点上时,P与Q是亲密的,记AR的长度为y=f(x),由PM2+MR2=RP2及余弦定理得:(x2﹣x+1)+[(2﹣y)2+(2﹣y)+1]=(2﹣x)2﹣(2﹣x)y+y2,整理,得:y=,∴正三角形的亲密度为:==[]=[x﹣ln(x+1)]=.故答案为:.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分14分)第1小题满分6分,第2小题满分8分
如图,直线y=x与抛物线y=x2-4交于A、B两点,线段AB的垂直平分线与直线y=-5交于Q点.
(1)求点Q的坐标;(2)当P为抛物线上位于线段AB下方(含A、B)的动点时,求ΔOPQ面积的最大值.
参考答案:
解析:(1)解方程组y=x得X1=-4,
x2=8y=x2-4y1=-2,
y2=4
即A(-4,-2),B(8,4),从而AB的中点为M(2,1).
由kAB==,直线AB的垂直平分线方程y-1=(x-2).
令y=-5,得x=5,∴Q(5,-5)
(2)直线OQ的方程为x+y=0,设P(x,x2-4).
∵点P到直线OQ的距离d==,
,∴SΔOPQ==.
∵P为抛物线上位于线段AB下方的点,且P不在直线OQ上,
∴-4≤x<4-4或4-4<x≤8.
∵函数y=x2+8x-32在区间[-4,8]上单调递增,
∴当x=8时,ΔOPQ的面积取到最大值30.19.如图,在四棱锥S﹣ABCD中,底面梯形ABCD中,AD∥BC,平面SAB⊥平面ABCD,△SAB是等边三角形,已知,M是SD上任意一点,,且m>0.(1)求证:平面SAB⊥平面MAC;(2)试确定m的值,使三棱锥S﹣ABC体积为三棱锥S﹣MAC体积的3倍.参考答案:【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【分析】(1)在△ABC中,由已知可得AB2+AC2=BC2,得到AB⊥AC,再由面面垂直的性质可得AC⊥平面SAB,进一步得到平面SAB⊥平面MAC;(2)由,可得VS﹣MAC=VM﹣SAC=,转化为三角形的面积比,可得m=2.【解答】(1)证明:在△ABC中,由于,∴AB2+AC2=BC2,故AB⊥AC,又平面SAB⊥平面ABCD,平面SAB∩平面ABCD=AB,AC?平面ABCD,∴AC⊥平面SAB,又AC?平面MAC,故平面SAB⊥平面MAC;(2)解:在△ACD中,∵AD=CD=,AC=4,∴,.又∵,∴VS﹣MAC=VM﹣SAC=,∴=,即m=2.故m的值为2.20.已知函数f(x)=|x﹣1|.(1)解不等式f(x)+f(x+4)≥8;(2)若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f().参考答案:【考点】:绝对值不等式的解法;不等式的证明.【专题】:不等式的解法及应用.【分析】:(Ⅰ)根据f(x)+f(x+4)=|x﹣1|+|x+3|=,分类讨论求得不等式f(x)+f(x+4)≥8的解集.(Ⅱ)要证的不等式即|ab﹣1|>|a﹣b|,根据|a|<1,|b|<1,可得|ab﹣1|2﹣|a﹣b|2>0,从而得到所证不等式成立.解:(Ⅰ)f(x)+f(x+4)=|x﹣1|+|x+3|=,当x<﹣3时,由﹣2x﹣2≥8,解得x≤﹣5;当﹣3≤x≤1时,f(x)≤8不成立;当x>1时,由2x+2≥8,解得x≥3.所以,不等式f(x)≤4的解集为{x|x≤﹣5,或x≥3}.(Ⅱ)f(ab)>|a|f(),即|ab﹣1|>|a﹣b|.因为|a|<1,|b|<1,所以|ab﹣1|2﹣|a﹣b|2=(a2b2﹣2ab+1)﹣(a2﹣2ab+b2)=(a2﹣1)(b2﹣1)>0,所以|ab﹣1|>|a﹣b|,故所证不等式成立.【点评】:本题主要考查绝对值不等式的解法,体现了等价转化和分类讨论的数学思想,属于中档题.21.在△ABC中,.(1)求cos2C;(2)若,求△ABC的周长.参考答案:(1);(2).【分析】(1)先求,由二倍角公式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 药品耗材存放管理制度
- 药品销售员工管理制度
- 药店分级分类管理制度
- 药店消防制度管理制度
- 菏泽基层宿舍管理制度
- 设备变更备案管理制度
- 设备定期维修管理制度
- 设备更新报废管理制度
- 设备管理二级管理制度
- 设备装配公司管理制度
- 生产工单结单管理制度
- 2025年陕西、山西、青海、宁夏高考物理试卷真题(含答案解析)
- 2025年全国统一高考数学试卷(全国一卷)含答案
- 2025-2030中国过程自动化系统行业市场发展趋势与前景展望战略分析研究报告
- 北京市西城区三年级下学期数学期末试卷(含答案)
- 惜时教育主题班会课件
- 体育聘用合同协议书模板
- 酒店会议就餐协议书
- 银行证券化信贷资产管理办法
- 《缺血性卒中脑细胞保护临床实践中国专家共识》解读
- 带状疱疹培训试题及答案
评论
0/150
提交评论