下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课题:数列的综合题【课前热身】1.三个互不相等的数成等比数列,如果适当排列这三个数,也可以成等差数列,已知这三个数的积等于8,则这三个数为2.数列中,a1=2,a2=3,且是以3为公比的等比数列,记(),则数列为数列。(填等差、等比)3已知数列和的通项公式分别为,(),将集合中的元素从小到大依次排列,构成数列。则2023是这个新数列的第项。【例题精讲】例1.在等差数列中,.1)当时,请在数列中找一项,使成等比数列2)当时,若自然数()满足,使得成等比数列,求数列的通项公式例2.设数列{}的各项均为正数.若对任意的,存在,使得成立,则称数列{}为“Jk型”数列.(1)若数列{}是“J2型”数列,且,,求;(2)若数列{}既是“J3型”数列,又是“J4型”数列,证明:数列{}是等比数列.例3.(1)设是各项均不为零的等差数列(),且公差,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列:①当时求的数值②求的所有可能值;探究:已知各项均为正整数的数列满足,且存在正整数,使得,当时,求数列的前36项的和;求数列的通项;【课堂练习】1已知等差数列首项为,公差为,等比数列首项为,公差为,其中、都是大于1的正整数,且,,那么=,若对于任意的,总存在,使得,则=2.各项均为正偶数的数列中,前三项依次成公差为的等差数列,后三项依次成公比为q的等比数列.若,则q的所有可能的值构成的集合为.【课堂小结】有关《数列综合题》这节课的几点设计想法本节课意图一、从高考动态看数列从近几年的高考试题看,数列的综合应用成为命题的热点,在填空题、解答题中都有可能出现,主要是等差、等比数列综合题,或可转化为等差、等比数列的综合问题.等差数列和等比数列是两个最基本的模型,是高考中的热点之一.基本知识以数列填空题的形式呈现,而综合知识则以解答题的形式呈现.本节课意图二、解数列题方法规律总结和升华(一)深刻理解等差(比)数列的性质,熟悉它们的推导过程是解题的关键.两类数列性质既有类似的部分,又有区别,要在应用中加强记忆,同时,用好性质也会降低解题的运算量,从而减少差错.如【课前热身】1.三个互不相等的数成等比数列,如果适当排列这三个数,也可以成等差数列,已知这三个数的积等于8,则这三个数为选题目的:①学生好入手,利用等差(比)中项可快速求解,计算量较大②体现分类讨论思想,为例3进行铺垫③在等差数列与等比数列中,经常要根据条件列方程(组)求解,在解方程组时,仔细体会两种情形中解方程组的方法的不同之处,但也可以引出学生直接观察出答案(凑数,直接从特列出发),重视“函数与方程”的数学思想(二)研究“子数列”问题时常用的方法如【课前热身】3.已知数列和的通项公式分别为,(),将集合中的元素从小到大依次排列,构成数列。则2023是这个新数列的第项。选题目的:①列举和各项,由一般到特殊,推出②推导出两个等差数列,的公共项组成的的公差为与的最小公倍数③小结“子数列”问题研究的基本思路,并通过变式加以巩固再如例1.在等差数列中,.1)当时,请在数列中找一项,使成等比数列2)当时,若自然数()满足,使得成等比数列,求数列的通项公式选题目的:①在已知等差(比)数列中,以化繁为简的原则抓住与,利用基本量方法解决②研究“子数列”问题时,要注意这些项的双重身份,关键是这个项在新数列和原数列中如何表示(三)数列的渗透力很强,它和函数、方程、三角形、不等式等知识相互联系,优化组合,无形中加大了综合的力度.解决此类题目,必须对蕴藏在数列概念和方法中的数学思想有所了解,深刻领悟它在解题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《a集团组织诊断》课件
- 2024年度合规审查合同:柴油企业经营合规性检查
- 2024年度脐橙分销合作:分销合作合同(2024版)
- 2024年度甲方乙状双方关于某图书馆建设的捐赠合同
- 2024中国移动招聘在线统一笔试易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国石化燕山石化毕业生招聘40人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国电信集团限公司云网运营部社会招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024年度电梯装修材料供应合同
- 2024中国大唐集团限公司华北电力运营分公司招聘(内)易考易错模拟试题(共500题)试卷后附参考答案
- 2024中化学南方建设投资限公司招聘56人易考易错模拟试题(共500题)试卷后附参考答案
- 炎症性肠病完
- 幼儿园公开课:小班社会《轻轻跑、慢慢跳》课件
- 2024年中国船级社认证公司招聘笔试参考题库含答案解析
- 绘本《罗伯生气了》
- 人教版2023-2024学年五年级数学上册常考易考突围第三单元小数除法·应用提高篇【九大考点】(原卷版)
- 2023年电大行政组织学试卷期末考试试题及答案
- Windows Server 网络管理课件第06章 WINS服务器
- GB/T 3394-2023工业用乙烯、丙烯中微量一氧化碳、二氧化碳和乙炔的测定气相色谱法
- 2023年7月辽宁省普通高中学业水平合格性考试语文试卷(含答案)
- 多变的天气-说课
- 幼儿园大班音乐《建筑之歌》
评论
0/150
提交评论