2023届福建省永春汤城中考联考数学试卷含解析及点睛_第1页
2023届福建省永春汤城中考联考数学试卷含解析及点睛_第2页
2023届福建省永春汤城中考联考数学试卷含解析及点睛_第3页
2023届福建省永春汤城中考联考数学试卷含解析及点睛_第4页
2023届福建省永春汤城中考联考数学试卷含解析及点睛_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023中考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1.在下列网格中,小正方形的边长为1,点A、B、O都在格点上,则的正弦值是A. B. C. D.2.如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是()A.130° B.120° C.110° D.100°3.益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:文化程度高中大专本科硕士博士人数9172095关于这组文化程度的人数数据,以下说法正确的是:()A.众数是20 B.中位数是17 C.平均数是12 D.方差是264.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A.6(m﹣n) B.3(m+n) C.4n D.4m5.分式的值为0,则x的取值为()A.x=-3 B.x=3 C.x=-3或x=1 D.x=3或x=-16.已知等边三角形的内切圆半径,外接圆半径和高的比是()A.1:2: B.2:3:4 C.1::2 D.1:2:37.小宇妈妈上午在某水果超市买了16.5元钱的葡萄,晚上散步经过该水果超市时,发现同一批葡萄的价格降低了25%,小宇妈妈又买了16.5元钱的葡萄,结果恰好比早上多了0.5千克.若设早上葡萄的价格是x元/千克,则可列方程()A. B.C. D.8.对于一组统计数据:1,6,2,3,3,下列说法错误的是()A.平均数是3 B.中位数是3 C.众数是3 D.方差是2.59.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE1=1(AD1+AB1)﹣CD1.其中正确的是()A.①②③④ B.②④ C.①②③ D.①③④10.已知函数y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c﹣4=0的根的情况是A.有两个相等的实数根 B.有两个异号的实数根C.有两个不相等的实数根 D.没有实数根二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系中,点P到轴的距离为1,到轴的距离为2.写出一个符合条件的点P的坐标________________.12.已知扇形的弧长为2π,圆心角为60°,则它的半径为________.13.如图,边长为6的菱形ABCD中,AC是其对角线,∠B=60°,点P在CD上,CP=2,点M在AD上,点N在AC上,则△PMN的周长的最小值为_____________.14.已知a2+a=1,则代数式3﹣a﹣a2的值为_____.15.Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.16.把多项式a3-2a2+a分解因式的结果是三、解答题(共8题,共72分)17.(8分)如图,已知在梯形ABCD中,,P是线段BC上一点,以P为圆心,PA为半径的与射线AD的另一个交点为Q,射线PQ与射线CD相交于点E,设.(1)求证:;(2)如果点Q在线段AD上(与点A、D不重合),设的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果与相似,求BP的长.18.(8分)如图,△ABC中,CD是边AB上的高,且.求证:△ACD∽△CBD;求∠ACB的大小.19.(8分)如图,抛物线(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.求抛物线的解析式;抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由.20.(8分)如图,点在的直径的延长线上,点在上,且AC=CD,∠ACD=120°.求证:是的切线;若的半径为2,求图中阴影部分的面积.21.(8分)如图,在四边形ABCD中,点E是对角线BD上的一点,EA⊥AB,EC⊥BC,且EA=EC.求证:AD=CD.22.(10分)求不等式组的整数解.23.(12分)如图,矩形ABCD中,点E为BC上一点,DF⊥AE于点F,求证:∠AEB=∠CDF.24.定义:在三角形中,把一边的中点到这条边的高线的距离叫做这条边的中垂距.例:如图①,在△ABC中,D为边BC的中点,AE⊥BC于E,则线段DE的长叫做边BC的中垂距.(1)设三角形一边的中垂距为d(d≥0).若d=0,则这样的三角形一定是,推断的数学依据是.(2)如图②,在△ABC中,∠B=15°,AB=3,BC=8,AD为边BC的中线,求边BC的中垂距.(3)如图③,在矩形ABCD中,AB=6,AD=1.点E为边CD的中点,连结AE并延长交BC的延长线于点F,连结AC.求△ACF中边AF的中垂距.

参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】

由题意根据勾股定理求出OA,进而根据正弦的定义进行分析解答即可.【详解】解:由题意得,,,由勾股定理得,,.故选:A.【点睛】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2、D【解析】分析:先根据圆内接四边形的性质得到然后根据圆周角定理求详解:∵∴∴故选D.点睛:考查圆内接四边形的性质,圆周角定理,掌握圆内接四边形的对角互补是解题的关键.3、C【解析】

根据众数、中位数、平均数以及方差的概念求解.【详解】A、这组数据中9出现的次数最多,众数为9,故本选项错误;B、因为共有5组,所以第3组的人数为中位数,即9是中位数,故本选项错误;C、平均数==12,故本选项正确;D、方差=[(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]=,故本选项错误.故选C.【点睛】本题考查了中位数、平均数、众数的知识,解答本题的关键是掌握各知识点的概念.4、D【解析】

解:设小长方形的宽为a,长为b,则有b=n-3a,阴影部分的周长:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.故选D.5、A【解析】

分式的值为2的条件是:(2)分子等于2;(2)分母不为2.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】∵原式的值为2,∴,∴(x-2)(x+3)=2,即x=2或x=-3;又∵|x|-2≠2,即x≠±2.∴x=-3.故选:A.【点睛】此题考查的是对分式的值为2的条件的理解,该类型的题易忽略分母不为2这个条件.6、D【解析】试题分析:图中内切圆半径是OD,外接圆的半径是OC,高是AD,因而AD=OC+OD;在直角△OCD中,∠DOC=60°,则OD:OC=1:2,因而OD:OC:AD=1:2:1,所以内切圆半径,外接圆半径和高的比是1:2:1.故选D.考点:正多边形和圆.7、B【解析】分析:根据数量=,可知第一次买了千克,第二次买了,根据第二次恰好比第一次多买了0.5千克列方程即可.详解:设早上葡萄的价格是x元/千克,由题意得,.故选B.点睛:本题考查了分式方程的实际应用,解题的关键是读懂题意,找出列方程所用到的等量关系.8、D【解析】

根据平均数、中位数、众数和方差的定义逐一求解可得.【详解】解:A、平均数为1+6+2+3+35B、重新排列为1、2、3、3、6,则中位数为3,正确;C、众数为3,正确;D、方差为15×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2故选:D.【点睛】本题考查了众数、平均数、中位数、方差.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.9、A【解析】分析:只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断;详解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正确,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正确,∴BE1=BC1-EC1=1AB1-(CD1-DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1.故④正确,故选A.点睛:本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.10、A【解析】

根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c﹣4=0的根的情况即是判断函数y=ax2+bx+c的图象与直线y=4交点的情况.【详解】∵函数的顶点的纵坐标为4,∴直线y=4与抛物线只有一个交点,∴方程ax2+bx+c﹣4=0有两个相等的实数根,故选A.【点睛】本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、(写出一个即可)【解析】【分析】根据点到x轴的距离即点的纵坐标的绝对值,点到y轴的距离即点的横坐标的绝对值,进行求解即可.【详解】设P(x,y),根据题意,得|x|=2,|y|=1,即x=±2,y=±1,则点P的坐标有(2,1),(2,-1),(-2,1),(2,-1),故答案为:(2,1),(2,-1),(-2,1),(2,-1)(写出一个即可).【点睛】本题考查了点的坐标和点到坐标轴的距离之间的关系.熟知点到x轴的距离即点的纵坐标的绝对值,点到y轴的距离即点的横坐标的绝对值是解题的关键.12、6.【解析】分析:设扇形的半径为r,根据扇形的面积公式及扇形的面积列出方程,求解即可.详解:设扇形的半径为r,根据题意得:60πr解得:r=6故答案为6.点睛:此题考查弧长公式,关键是根据弧长公式解答.13、2【解析】

过P作关于AC和AD的对称点,连接和,过P作,和,M,N共线时最短,根据对称性得知△PMN的周长的最小值为.因为四边形ABCD是菱形,AD是对角线,可以求得,根据特殊三角形函数值求得,,再根据线段相加勾股定理即可求解.【详解】过P作关于AC和AD的对称点,连接和,过P作,四边形ABCD是菱形,AD是对角线,,,,,又由题意得【点睛】本题主要考查对称性质,菱形性质,内角和定理和勾股定理,熟悉掌握定理是关键.14、2【解析】∵,∴,故答案为2.15、3.1或4.32或4.2【解析】【分析】在Rt△ABC中,通过解直角三角形可得出AC=5、S△ABC=1,找出所有可能的分割方法,并求出剪出的等腰三角形的面积即可.【详解】在Rt△ABC中,∠ACB=90°,AB=3,BC=4,∴AB==5,S△ABC=AB•BC=1.沿过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:①当AB=AP=3时,如图1所示,S等腰△ABP=•S△ABC=×1=3.1;②当AB=BP=3,且P在AC上时,如图2所示,作△ABC的高BD,则BD=,∴AD=DP==1.2,∴AP=2AD=3.1,∴S等腰△ABP=•S△ABC=×1=4.32;③当CB=CP=4时,如图3所示,S等腰△BCP=•S△ABC=×1=4.2;综上所述:等腰三角形的面积可能为3.1或4.32或4.2,故答案为:3.1或4.32或4.2.【点睛】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的分割方法,并求出剪出的等腰三角形的面积是解题的关键.16、.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,.三、解答题(共8题,共72分)17、(1)见解析;(2);(3)当或8时,与相似.【解析】

(1)想办法证明即可解决问题;(2)作A于M,于N.则四边形AMPN是矩形.想办法求出AQ、PN的长即可解决问题;(3)因为,所以,又,推出,推出相似时,与相似,分两种情形讨论即可解决问题;【详解】(1)证明:四边形ABCD是等腰梯形,,,,,,,.(2)解:作于M,于N.则四边形是矩形.在中,,,,,,.(3)解:,,,相似时,与相似,,当时,,此时,当时,,此时,综上所述,当PB=5或8时,与△相似.【点睛】本题考查几何综合题、圆的有关性质、等腰梯形的性质,锐角三角函数、相似三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造直角三角形和特殊四边形解决问题,属于中考压轴题.18、(1)证明见试题解析;(2)90°.【解析】试题分析:(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.试题解析:(1)∵CD是边AB上的高,∴∠ADC=∠CDB=90°,∵.∴△ACD∽△CBD;(2)∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.考点:相似三角形的判定与性质.19、(1)抛物线的解析式为;(2)PM=(0<m<3);(3)存在这样的点P使△PFC与△AEM相似.此时m的值为或1,△PCM为直角三角形或等腰三角形.【解析】

(1)将A(3,0),C(0,4)代入,运用待定系数法即可求出抛物线的解析式.(2)先根据A、C的坐标,用待定系数法求出直线AC的解析式,从而根据抛物线和直线AC的解析式分别表示出点P、点M的坐标,即可得到PM的长.(3)由于∠PFC和∠AEM都是直角,F和E对应,则若以P、C、F为顶点的三角形和△AEM相似时,分两种情况进行讨论:①△PFC∽△AEM,②△CFP∽△AEM;可分别用含m的代数式表示出AE、EM、CF、PF的长,根据相似三角形对应边的比相等列出比例式,求出m的值,再根据相似三角形的性质,直角三角形、等腰三角形的判定判断出△PCM的形状.【详解】解:(1)∵抛物线(a≠0)经过点A(3,0),点C(0,4),∴,解得.∴抛物线的解析式为.(2)设直线AC的解析式为y=kx+b,∵A(3,0),点C(0,4),∴,解得.∴直线AC的解析式为.∵点M的横坐标为m,点M在AC上,∴M点的坐标为(m,).∵点P的横坐标为m,点P在抛物线上,∴点P的坐标为(m,).∴PM=PE-ME=()-()=.∴PM=(0<m<3).(3)在(2)的条件下,连接PC,在CD上方的抛物线部分存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似.理由如下:由题意,可得AE=3﹣m,EM=,CF=m,PF==,若以P、C、F为顶点的三角形和△AEM相似,分两种情况:①若△PFC∽△AEM,则PF:AE=FC:EM,即():(3-m)=m:(),∵m≠0且m≠3,∴m=.∵△PFC∽△AEM,∴∠PCF=∠AME.∵∠AME=∠CMF,∴∠PCF=∠CMF.在直角△CMF中,∵∠CMF+∠MCF=90°,∴∠PCF+∠MCF=90°,即∠PCM=90°.∴△PCM为直角三角形.②若△CFP∽△AEM,则CF:AE=PF:EM,即m:(3-m)=():(),∵m≠0且m≠3,∴m=1.∵△CFP∽△AEM,∴∠CPF=∠AME.∵∠AME=∠CMF,∴∠CPF=∠CMF.∴CP=CM.∴△PCM为等腰三角形.综上所述,存在这样的点P使△PFC与△AEM相似.此时m的值为或1,△PCM为直角三角形或等腰三角形.20、(1)见解析(2)图中阴影部分的面积为π.【解析】

(1)连接OC.只需证明∠OCD=90°.根据等腰三角形的性质即可证明;(2)先根据直角三角形中30°的锐角所对的直角边是斜边的一半求出OD,然后根据勾股定理求出CD,则阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积.【详解】(1)证明:连接OC.∵AC=CD,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC,∴∠2=∠A=30°.∴∠OCD=∠ACD-∠2=90°,即OC⊥CD,∴CD是⊙O的切线;(2)解:∠1=∠2+∠A=60°.∴S扇形BOC==.在Rt△OCD中,∠D=30°,∴OD=2OC=4,∴CD==.∴SRt△OCD=OC×CD=×2×=.∴图中阴影部分的面积为:-.21、证明见解析【解析】

根据垂直的定义和直角三角形的全等判定,再利用全等三角形的性质解答即可.【详解】∵EA⊥AB,EC⊥BC,∴∠EAB=∠ECB=90°,在Rt△EAB与Rt△ECB中,∴Rt△EAB≌Rt△ECB,∴AB=CB,∠ABE=∠CBE,∵BD=BD,在△ABD与△CBD中,∴△ABD≌△CBD,∴AD=CD.【点睛】本题考查了全等三角形的判定及性质,根据垂直的定义和直角三角形的全等判定是解题的关键.22、-1,-1,0,1,1【解析】分析:先求出不等式组的解集,然后求出整数解.详解:,由不等式①,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论