一些重要的逐步聚合物_第1页
一些重要的逐步聚合物_第2页
一些重要的逐步聚合物_第3页
一些重要的逐步聚合物_第4页
一些重要的逐步聚合物_第5页
已阅读5页,还剩49页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二章逐步聚合反应

高分子化学2.6逐步聚合反应的实施方法2.7一些重要的逐步聚合物2.6逐步聚合反应的实施方法

熔融聚合聚合体系中只加单体和少量的催化剂,不加任何溶剂,聚合过程中原料单体和生成的聚合物始终处于熔融状态。熔融聚合操作较简单,把单体混合物、催化剂和稳定剂等投入反应器内,然后加热使物料在熔融状态下进行反应。

特点:▲反应温度高(200~300℃);▲反应时间长;▲需在惰性气氛下进行;▲反应后期需高真空。(1)熔融聚合优点:产品后处理容易,设备简单,可连续生产。缺点:要求严格控制功能基等摩尔比,对原料纯度要求高;需高真空,对设备要求高;副反应易。熔融聚合工艺一般分为以下三个阶段:初期阶段:

反应:以单体之间、单体与低聚物之间的反应为主。

条件:可在较低温度、较低真空度下进行。

任务:防止单体挥发、分解等,保证功能基等摩尔比。

中期阶段:

反应:低聚物之间的反应为主。

条件:高温、高真空。任务:除去小分子,提高反应程度,提高聚合产物分子量。

终止阶段:

反应:反应已达预期指标。

任务:及时终止反应,避免副反应,节能省时。溶液聚合是指将单体等反应物溶在溶剂中进行聚合反应的一种实施方法。所用溶剂可以是单一的,也可以是几种溶剂的混合物。溶液聚合广泛用于涂料、胶粘剂等的制备,特别适于合成难熔融的耐热聚合物。

溶剂的选择:▲对单体和聚合物的溶解性好;▲溶剂沸点应高于设定的聚合反应温度;▲有利于移除小分子副产物:高沸点溶剂;溶剂与小分子形成共沸物。(2)溶液聚合优点:

▲反应温度低,副反应少;

▲传热性好,反应可平稳进行;

▲无需高真空,反应设备较简单;

▲可合成热稳定性低的产品。缺点:

▲反应影响因素增多,工艺复杂;

▲若需除去溶剂时,后处理复杂:溶剂回收,聚合物的析出,残留溶剂对产品性能的影响等。界面缩聚是将两种单体分别溶于两种互不相溶的溶剂中,再将这两种溶液倒在一起,在两液相的界面上进行缩聚反应,聚合产物不溶于溶剂,在界面析出。

己二酰氯与己二胺之界面缩聚(3)界面缩聚界面缩聚能否顺利进行的影响因素

为使聚合反应持续进行,要求聚合物具有足够的力学强度;水相中需加入适量无机碱,以避免反应生成的HCl与二元胺反应生成低活性的二元胺盐酸盐;要求单体反应活性高,若反应速度太慢,酰氯可有足够的时间从有机相扩散穿过界面进入水相,水解反应严重,导致聚合反应不能顺利进行,因此界面缩聚不适合与活性相对较低的酰氯和醇;有机溶剂的选择对控制聚合产物的分子量很重要。在大多数情况下,聚合反应主要发生在界面的有机相一侧,若有机溶剂对聚合物的溶解性过小,会造成聚合产物的过早沉淀,妨碍高分子量聚合产物的生成。界面缩聚总的反应速率受单体扩散速率控制;必须采用高活性单体,以使聚合反应在界面迅速进行;聚合反应只发生在界面,产物分子量与体系总的反应程度无关;界面缩聚的特点并不总是要求体系中总的功能基摩尔比等于1,因而对单体的纯度要求也不是十分苛刻;反应温度低,可避免因高温而导致的副反应,有利于高熔点耐热聚合物的合成。界面缩聚由于需采用高活性单体,且溶剂消耗量大,设备利用率低,因此虽然有许多优点,但工业上实际应用并不多,典型的例子是双酚A型聚碳酸酯的合成。

固相聚合是指单体或预聚物在聚合反应过程中始终保持在固态条件下进行的聚合反应。主要应用于熔点高的单体或部分结晶低聚物的后聚合反应。固相聚合反应温度一般比单体熔点低15-30℃,或者处于低聚物非晶区的玻璃化温度和晶区的熔点之间。需用惰性气体(如氮气等)或对单体和聚合物不具溶解性而对聚合反应的小分子副产物具有良好溶解性的溶剂作为清除流体,把小分子副产物从体系中带走,促进聚合反应的进行。(4)固态缩聚2.7一些重要的逐步聚合物2.7.1聚酯

聚酯是指单体单元通过酯基相互连接的一类聚合物。根据单体组成和产物结构的不同,聚酯主要可分为线形饱和聚酯、醇酸树脂、不饱和聚酯,有时也把聚碳酸酯也归属于聚酯。

(1)线形聚酯

聚对苯二甲酸乙二酯(PET)

聚对苯二甲酸丁二酯(PBT)

聚对苯二甲酸丙二酯(PTT)

线形聚酯最常用的合成方法为高温熔融聚合,根据单体组成的不同可分为直接酯化法和酯交换法。以聚对苯二甲酸乙二酯为例:(ⅰ)直接酯化法

聚合反应过程分为两个阶段:第一阶段为对苯二甲酸和过量的乙二醇(约1:1.2)直接酯化,反应在加压下于230~270℃进行,反应产物为低聚物。

以n=1的产物为主

第二阶段的反应主要是低聚物的末端羟基和末端酯基发生酯交换脱去乙二醇,需高温(270~290℃、高真空(10~50Pa)。

通过升温和抽真空将体系中过量的乙二醇除去,直至得到高分子量聚合物。(ⅱ)酯交换法

直接酯化法合成PET需要高纯度的对苯二甲酸(不易提纯),一般是先将对苯二甲酸与甲醇反应生成对苯二甲酸二甲酯(易提纯),再与乙二醇通过酯交换法制备PET,聚合反应分为两个阶段。

第一阶段对苯二甲酸二甲酯和过量的乙二醇发生酯交换(180~200℃),得到末端为对苯二甲酸羟乙酯的低聚物:

第二阶段的反应与直接酯化法第二阶段的反应相似,低聚物的末端羟基和末端酯基发生酯交换脱去乙二醇:

主要用于生产纤维、工程塑料、瓶和容器、薄膜等。

(2)醇酸树脂

醇酸树脂通常由二元或多元羧酸与二元或多元醇的非线形缩聚反应合成,通过控制聚合反应投料比,并在p<pc时终止聚合反应,可得到可溶可熔的支化聚酯预聚物。

醇酸树脂中最常用的单体是邻苯二甲酸酐和甘油,聚合反应可示意如下:

支化聚酯预聚物的交联固化反应是通过预聚物所含的未反应羧基和羟基之间的酯化反应进行的,因此必须在较高温度下(约200℃)进行,通常用作烤漆。

如果在上述聚合反应体系中加入长链不饱和一元脂肪酸,则可在预聚物中引入不饱和双键,所得预聚物称为油改性醇酸树脂。与空气中的氧气发生氧化反应,在不饱和双键的烯丙位上产生自由基,从而发生自由基交联固化,使液状的预聚物变为固态交联聚合物,这一过程常称为“干燥”。

不饱和脂肪酸的引入方法主要有两种:(a)以脂肪酸形式直接使用

不饱和脂肪酸可由由植物油(甘油三脂肪酸酯)中提取,常用的植物油包括大豆油、蓖麻油、亚麻子油、桐油等,可以获得以下不饱和脂肪酸。亚油酸亚麻酸桐酸(b)以油(甘油三脂肪酸酯)的形式使用由于油与甘油、邻苯二甲酸酐不能混溶而产生相分离,使油难以参与酯化反应,因此需先将油和甘油进行交换反应,使之变为甘油的不完全脂肪酸酯,然后在均相条件下进行聚合反应。油和甘油的交换反应可示意如下:

油度不饱和脂肪酸对应的油(甘油三酸酯)在树脂中所占的质量百分比。油度越高,干燥越快。

(3)不饱和聚酯

不饱和聚酯是由二元醇、饱和与不饱和二元酸(或酸酐)熔融缩聚得到的低分子量(1500~2500)线形聚酯,如最简单的不饱和树脂可由马来酸酐和乙二醇熔融缩聚而得:

预聚物分子中加入苯乙烯等乙烯基单体(活性稀释剂),使用时通过预聚物的不饱和双键与乙烯基单体的自由基共聚合反应来实现交联固化。

用途:玻璃纤维增强塑料(即玻璃钢)用于制造大型构件(汽车车身、小船艇、容器、工艺塑像);与无机粉末复合,用于制造卫浴用品、装饰板、人造大理石等。(4)聚碳酸酯

最重要的聚碳酸酯是双酚A型聚碳酸酯,根据所用单体的不同,其工业合成有光气法和酯交换法。

光气法所用单体为双酚A和光气:

合成工艺可采用溶液聚合(吡啶为溶剂)或界面缩聚,其中以界面缩聚最主。缺点是光气为高毒性气体,难操作。酯交换法用的单体为双酚A和碳酸二苯酯(熔融缩聚):酯交换法无需使用溶剂、并可避免直接使用光气,可得到高纯度的聚碳酸酯,能满足一些对光学性能要求非常严格的应用。但熔融聚合法由于很难将副产物苯酚从粘稠的聚合混合物中除去,难以获得高分子量的聚合物,而且双酚A在高温及OH-存在下不稳定,容易导致聚合产物变色。

用途:

聚碳酸酯具有优异的透明性、冲击性能和尺寸稳定性,应用广泛,包括压缩光盘、玻璃制品(门、窗、太阳镜、安全面罩、防爆玻璃等)以及汽车工业(仪表板及其零部件、挡风玻璃、车身外壳等)、医疗器械电子电气工业,用作绝缘插件、线圈框架、垫片等。

2.7.2聚酰胺

聚酰胺是指聚合物分子中单体单元是通过酰胺基相互连接的聚合物,脂肪族的聚酰胺又称尼龙。

合成聚酰胺的单体:

二元胺+二元酸AA-BB型聚酰胺

氨基酸或环内酰胺AB型聚酰胺

由于氨基酸单体的熔点高,难提纯、成本高,因此工业上的AB型聚酰胺主要由环内酰胺开环聚合合成。命名

AA+BB型聚酰胺:在“聚酰胺”前缀后分别标上二元胺和二元酸所含的碳原子数。如

己二胺和己二酸聚合产物:聚酰胺-6,6(或尼龙-6,6)己二胺癸二酸聚合产物:聚酰胺-6,10(或尼龙-6,10)

AB型聚酰胺:在“聚酰胺”后加注单体所含的碳原子数,如由氨基己酸或己内酰胺得到的聚合物:聚酰胺-6(或尼龙-6)

用途:

绝大部分的聚酰胺用于制造合成纤维,广泛地应用于制造布料、轮胎帘布、毡毯、绳索等。少部分聚酰胺用于制造塑料制品,主要应用于各种机械、化工设备及电子电气部件,如轴承、齿轮、泵叶轮、密封圈、垫片、输油管、电器线圈骨架、各种电绝缘件以及各种类型的管、棒、片材等。芳香族聚酰胺具有高Tg(>200℃)和高Tm(>500℃),因而可作耐高温材料。

合成

脂肪族聚酰胺一般在其熔融温度以上是热稳定性的,几乎无一例外地都是采用熔融聚合法。

为了精确控制等摩尔单体的量,一般首先将二元胺和二元酸在水溶液中反应得到聚酰胺盐,然后加热熔融聚合,以最重要的聚酰胺-6,6为例:

起始原料为二元胺和二元酸的水溶液,在高压釜中加压、升温进行预聚合。预聚反应完成后,在常压下进行熔融聚合,后期采用高温高真空的办法来除去小分子副产物以提高分子量。

全芳香族聚酰胺由于熔点高(>500℃),不宜采用熔融聚合法制备,可以溶液聚合方式或界面缩聚方式进行。此时必须采用高活性的二元酰氯代替二元酸与二元胺进行聚合反应。

用途:绝大部分的聚酰胺用于制造合成纤维(俗称锦纶),广泛地应用于制造布料、轮胎帘布、毡毯、绳索等。少部分聚酰胺用于制造塑料制品,主要应用于各种机械、化工设备及电子电气部件,如轴承、齿轮、泵叶轮、密封圈、垫片、输油管、电器线圈骨架、各种电绝缘件以及各种类型的管、棒、片材等。2.7.3酚醛树脂

苯酚和甲醛反应产物。

用酸或碱作催化剂时,反应机理不同,所得聚合物的分子形态也不同。在酸催化下,通过适当地控制投料比可得到线形酚醛树脂,而在碱催化下总得到非线形酚醛树脂。

f=3甲醛:f=2(1)酸催化酚醛树脂

在酸催化下,甲醛和苯酚的摩尔比为0.5-0.8:1(苯酚过量)时,可得到分子量为500~5000的热塑性树脂。聚合反应机理为甲醛质子化后跟苯酚发生邻位或对位的亲电取代反应:

所得的羟甲基苯酚迅速与其它苯酚分子未取代的邻、对位H脱水缩合形成亚甲基桥键,其反应速度比前一步的亲电取代反应速度快5~10倍:

一旦在苯环上引入一个羟甲基后,立刻与其他苯酚反应生成二苯酚中间体,在苯酚过量的情况下不能分离得到羟甲基取代的中间产物,因此酸催化的酚醛树脂的分子结构中不含羟甲基。由于分子链的屏蔽作用,酚醛树脂分子中的未取代反应点因位阻大,比末端反应点的活性低,因此羟甲基的引入总是优先发生在分子链的末端,在苯酚过量的情况下得到线形高分子:

酸催化酚醛树脂中不含羟甲基,不能简单地通过加热来实现交联固化。必须外加甲醛才能发生交联反应,通常加入多聚甲醛或六亚甲基四胺作为固化剂,它们在加热、加压条件下可分解释放出甲醛,进而发生交联反应。

(2)碱催化酚醛树脂当甲醛和苯酚以摩尔比1.2-3.0:1(甲醛过量)在碱催化下聚合时可得到无规预聚物。

聚合时,首先苯酚阴离子与甲醛加成形成邻或对位羟甲基取代的苯酚,以邻位反应为例,反应过程可示意如下:

预聚物组成固化预聚物分子中含有大量的羟甲基,可在加热条件下进一步发生缩聚得到交联的聚合物,因此碱催化酚醛树脂的固化不需要外加固化剂:

用途:

酚醛树脂具有较好的机械性能、电气性能及耐热尺寸稳定性等,酚醛树脂的应用包括涂料、胶粘剂、模塑料、摩擦材料、铸造树脂、层压板、木材粘结、纤维粘结、复合材料等。

2.7.4聚氨酯

聚氨酯指的是一类单体单元之间的特征连接基团为氨基甲酸酯的聚合物.

聚氨酯预聚物通常是由二或多端羟基预聚物与二元或多异氰酸酯进行重键加成聚合而成:(1)合成聚氨酯单体

常用异氰酸酯

端羟基预聚物

端羟基预聚物主要包括二端羟基聚醚和二端羟基聚酯。

二羟基聚酯由二元羧酸和过量的二元醇缩聚反应而成:二羟基聚醚:通常由环氧乙烷或环氧丙烷在碱催化下聚合,用水终止反应而得:(2)聚氨酯预聚物固化剂

多异氰酸酯固化剂:

多元醇固化剂

水固化剂:

聚氨酯泡沫

2.7.5环氧树脂预聚物

主链上含醚键和仲羟基,端基为环氧基的预聚物。目前使用的环氧树脂预聚物90%以上是由双酚A与过量的环氧氯丙烷缩聚而成:

通过调节氯代环氧丙烷的过量程度并控制反应程度得到不同分子量的液态或固态树脂(n=2-25)。

聚合反应机理目前还存在争议,普遍的看法:

环氧树脂的固化

环氧树脂的固化反应可有两种基本方法,一是加入适当的引发剂引发环氧基的开环聚合,另一种方法是加入能与树脂中的环氧基或羟基反应的多功能化合物作为固化剂。以第二种方法最普遍。多功能基化合物固化剂主要:多元胺及其酰胺衍生物、多元羧酸、酸酐等。

胺类固化剂

多元羧酸或酸酐固化

用途

环氧树脂分子中的双酚A结构赋予聚合物优良的韧性、刚性和高温性能;醚键和仲羟基为极性基团,可与多种表面之间形成较强的相互作用,环氧基还可与介质表面的活性基应形成化学键,产生强力的粘结,因此环氧树脂具有独特的黏附力,对多种材料具有良好的粘接性能,常称“万能胶”。2.7.6脲醛树脂和三聚氰胺-甲醛树脂

脲醛树脂是由尿素和甲醛缩聚所得的无规预聚物:

所得预聚物可在酸性条件下加热固化。脲醛树脂的用途与酚醛树脂类似,可用于模塑、层压和粘合剂等领域。与酚醛树脂相比,其优点是颜色浅。

f=4

三聚氰胺甲醛树脂通常比脲醛树脂更硬、耐湿性更好,其主要用途与脲醛树脂相似。

三聚氰胺可与甲醛发生类似的反应得到三聚氰胺-甲醛

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论