版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
实验三离散傅立叶变换第一页,共四十三页,2022年,8月28日一、实验目的
加深对离散傅立叶变换(DFT)的理解。掌握利用MATLAB语言进行离散傅立叶变换和逆变换的方法。加深对离散傅立叶变换基本性质的理解。掌握离散傅立叶变换快速算法的应用。第二页,共四十三页,2022年,8月28日二、实验原理及方法
建立以时间t为自变量的“信号”与以频率f为自变量的“频率函数”(频谱)之间的某种变换关系。所以“时间”或“频率”取连续还是离散值,就形成各种不同形式的傅里叶变换对。傅里叶变换第三页,共四十三页,2022年,8月28日四种不同傅里叶变换对傅里叶级数(FS):连续时间,离散频率的傅里叶变换。周期连续时间信号傅里叶级数(FS)得到非周期离散频谱密度函数。傅里叶变换(FT):连续时间,连续频率的傅里叶变换。非周期连续时间信号通过连续付里叶变换(FT)得到非周期连续频谱密度函数。离散时间的傅里叶变换(DTFT):离散时间,连续频率的傅里叶变换。非周期离散的时间信号(单位园上的Z变换(DTFT))得到周期性连续的频率函数。离散傅里叶变换(DFT):离散时间,离散频率的傅里叶变换。第四页,共四十三页,2022年,8月28日上面讨论的前三种傅里叶变换对,都不适用在计算机上运算,因为至少在一个域(时域或频域)中,函数是连续的。因为从数字计算角度我们感兴趣的是时域及频域都是离散的情况,这就是第四种离散傅里叶变换。第五页,共四十三页,2022年,8月28日离散傅里叶级数(DFS)离散时间序列x(n)满足x(n)=x(n+rN),称为离散周期序列,其中N为周期,x(n)为主值序列。由傅立叶分析知道周期函数可由复指数的线性组合叠加得到。其频率为基本频率的倍数。从离散时间傅立叶变换的频率周期性,我们知道谐波次数是有限的,其频率为周期序列可表示成:第六页,共四十三页,2022年,8月28日其中叫做离散傅立叶级数系数,也称为周期序列的频谱,可由下式表示注意也是一个基本周期为N的周期序列。上面两式称为周期序列的傅立叶级数变换对。令表示复指数,可以得到以下:第七页,共四十三页,2022年,8月28日例:求出下面周期序列的DFSx(n)={……,0,1,2,3,0,1,2,3,0,1,2,3,……}基本周期为N=4,WN=W4=-j,
因而第八页,共四十三页,2022年,8月28日MATLAB实现矩阵-向量相乘运算来实现。由于和均为周期函数,周期为N,可设和代表序列和的主值区间序列,则前面的两个表达式可写成:式中,矩阵WN为方阵——DFS矩阵。第九页,共四十三页,2022年,8月28日利用MATLAB实现傅立叶级数计算编写函数实现DFS计算functionxk=dfs(xn,N)n=[0:1:N-1];%n的行向量k=n;%k的行向量WN=exp(-j*2*pi/N);%WN因子nk=n’*k;%产生一个含nk值的N乘N维矩阵WNnk=WN.^nk;%DFS矩阵xk=xn*WNnk;%DFS系数行向量第十页,共四十三页,2022年,8月28日例:xn=[0,1,2,3],N=4xn=[0,1,2,3];N=4;xk=dfs(xn,N)’第十一页,共四十三页,2022年,8月28日逆运算IDFSfunctionxn=idfs(xk,N)n=[0:1:N-1];k=n;WN=exp(-j*2*pi/N);nk=n’*k;WNnk=WN.^(-nk);xn=(xk*WNnk)/N;第十二页,共四十三页,2022年,8月28日xn=idfs(xk',4)x=xn'第十三页,共四十三页,2022年,8月28日周期重复次数对序列频谱的影响理论上讲,周期序列不满足绝对可积条件,要对周期序列进行分析,可以先取K个周期进行处理,然后让K无限增大,研究其极限情况。这样可以观察信号序列由非周期到周期变换时,频谱由连续谱逐渐向离散谱过渡的过程。第十四页,共四十三页,2022年,8月28日例:已知一个矩形序列的脉冲宽度占整个周期的1/2,一个周期的采样点数为10,用傅立叶级数变换求信号的重复周期数分别为1、4、7、10时的幅度频谱。MATLAB程序:xn=[ones(1,5),zeros(1,5)];Nx=length(xn);Nw=1000;dw=2*pi/Nw;k=floor((-Nw/2+0.5):(Nw/2+0.5));forr=0:3;K=3*r+1;nx=0:(K*Nx-1);x=xn(mod(nx,Nx)+1);Xk=x*(exp(-j*dw*nx'*k))/K;subplot(4,2,2*r+1);stem(nx,x)axis([0,K*Nx-1,0,1.1]);ylabel('x(n)');subplot(4,2,2*r+2);plot(k*dw,abs(Xk))axis([-4,4,0,1.1*max(abs(Xk))]);ylabel('X(k)');end第十五页,共四十三页,2022年,8月28日从上图可以看出,信号序列的周期数越多,则频谱越是向几个频点集中,当信号周期数趋于无穷大时,频谱转化为离散谱。第十六页,共四十三页,2022年,8月28日离散傅立叶变换(DFT)有限长序列x(n)表示为x(n)是非周期序列,但可以理解为周期序列的主值序列。由离散傅立叶级数DFS和IDFS引出有限长序列的离散傅立叶正、逆变换关系式第十七页,共四十三页,2022年,8月28日有限长序列傅立叶变换定义式为:
比较正、逆变换的定义式可以看出,只要把DFT公式中的系数改为,并最后乘以1/N,那么,DFT的计算程序就可以用来计算IDFT。第十八页,共四十三页,2022年,8月28日DFT与DFS的关系比较两者的变换对,可以看出两者的区别仅仅是将周期序列换成了有限长序列。有限长序列x(n)可以看作是周期序列的一个周期;反之周期序列可以看作是有限长序列x(n)以N为周期的周期延拓。由于公式非常相似,在程序编写上也基本一致。第十九页,共四十三页,2022年,8月28日例:已知序列x(n)=[0,1,2,3,4,5,6,7],求x(n)的DFT和IDFT,画出序列傅立叶变换的幅度和相位图,并将原图像与逆变换图像进行比较。N=8;xn=0:N-1;n=0:N-1;xk=dft(xn,N);x=idft(xk,N);subplot(2,2,1);stem(n,xn)subplot(2,2,2);stem(n,abs(x))subplot(2,2,3);stem(n,abs(xk))subplot(2,2,4);stem(n,angle(xk))第二十页,共四十三页,2022年,8月28日第二十一页,共四十三页,2022年,8月28日三、快速傅立叶变换有限长序列通过离散傅里叶变换(DFT)将其频域离散化成有限长序列.但其计算量太大(与N的平方成正比),很难实时地处理问题,因此引出了快速傅里叶变换(FFT)。FFT并不是一种新的变换形式,它只是DFT的一种快速算法.并且根据对序列分解与选取方法的不同而产生了FFT的多种算法.第二十二页,共四十三页,2022年,8月28日DFT的快速算法—FFT是数字信号处理的基本方法和基本技术,是必须牢牢掌握的。时间抽选FFT算法的理论推导和流图详见《数字信号处理》教材。该算法遵循两条准则:(1)对时间奇偶分;(2)对频率前后分。这种算法的流图特点是:(1)基本运算单元都是蝶形
任何一个长度为N=2M的序列,总可通过M次分解最后成为2点的DFT计算。如图所示:第二十三页,共四十三页,2022年,8月28日WNk称为旋转因子计算方程如下:Xm+1(p)=Xm(p)+WNkXm(q)Xm+1(q)=Xm(p)-WNkXm(q)第二十四页,共四十三页,2022年,8月28日(2)同址(原位)计算这是由蝶形运算带来的好处,每一级蝶形运算的结果Xm+1(p)无须另外存储,只要再存入Xm(p)中即可,Xm+1(q)亦然。这样将大大节省存储单元。(3)变址计算输入为“混序”(码位倒置)排列,输出按自然序排列,因而对输入要进行“变址”计算(即码位倒置计算)。“变址”实际上是一种“整序”的行为,目的是保证“同址”。第二十五页,共四十三页,2022年,8月28日FFT的应用凡是利用付里叶变换来进行分析、综合、变换的地方,都可以利用FFT算法来减少其计算量。FFT主要应用在1、快速卷积2、快速相关3、频谱分析第二十六页,共四十三页,2022年,8月28日快速傅立叶变换的MATLAB实现提供fft函数计算DFT格式
X=fft(x)
X=fft(x,N)如果x的长度小于N,则在其后填零使其成为N点序列,反之对x进行截断,若省略变量N,则DFT的长度即为x的长度。如果N为2的幂,则得到高速的基-2FFT算法;若N不是2的乘方,则为较慢的混合算法。如果x是矩阵,则X是对矩阵的每一列向量作FFT。第二十七页,共四十三页,2022年,8月28日快速傅立叶逆变换(IFFT)函数调用格式
y=ifft(x)y=ifft(x,N)当N小于x长度时,对x进行截断,当N大于x长度时,对x进行补零。第二十八页,共四十三页,2022年,8月28日fftshift函数功能:对fft的输出进行重新排列,将零频分量移到频谱的中心。调用格式
y=fftshift(x)
当x为向量时,fftshift(x)直接将x中左右两半交换而产生y。当x为矩阵时,fftshift(x)直接将x中左右、上下进行交换而产生y。第二十九页,共四十三页,2022年,8月28日由题目可得x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t)fs=100N=128/1024例:已知信号由15Hz幅值0.5的正弦信号和40Hz幅值2的正弦信号组成,数据采样频率为100Hz,试绘制N=128点DFT的幅频图。第三十页,共四十三页,2022年,8月28日fs=100;N=128;n=0:N-1;t=n/fs;x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);y=fft(x,N);f=(0:length(y)-1)'*fs/length(y);mag=abs(y);stem(f,mag);title(‘N=128点’)第三十一页,共四十三页,2022年,8月28日第三十二页,共四十三页,2022年,8月28日利用FFT进行功率谱的噪声分析已知带有测量噪声信号其中f1=50Hz,f2=120Hz,为均值为零、方差为1的随机信号,采样频率为1000Hz,数据点数N=512。试绘制信号的功率谱图。第三十三页,共四十三页,2022年,8月28日t=0:0.001:0.6;x=sin(2*pi*50*t)+sin(2*pi*120*t);y=x+2*randn(1,length(t));Y=fft(y,512);P=Y.*conj(Y)/512;%求功率f=1000*(0:255)/512;subplot(2,1,1);plot(y);subplot(2,1,2);plot(f,P(1:256));第三十四页,共四十三页,2022年,8月28日第三十五页,共四十三页,2022年,8月28日序列长度和FFT的长度对信号频谱的影响。已知信号其中f1=15Hz,f2=40Hz,采样频率为100Hz.
在下列情况下绘制其幅频谱。
Ndata=32,Nfft=32;Ndata=32,Nfft=128;第三十六页,共四十三页,2022年,8月28日fs=100;Ndata=32;Nfft=32;n=0:Ndata-1;t=n/fs;x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);y=fft(x,Nfft);mag=abs(y);f=(0:length(y)-1)’*fs/length(y);subplot(2,1,1)plot(f(1:Nfft/2),mag(1:Nfft/2))title(‘Ndata=32,Nfft=32’)第三十七页,共四十三页,2022年,8月28日Nfft=128;n=0:Ndata-1;t=n/fs;x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);y=fft(x,Nfft);mag=abs(y);f=(0:length(y)-1)’*fs/length(y);subplot(2,1,2)plot(f(1:Nfft/2),mag(1:Nfft/2))title(‘Ndata=32,Nfft=128’)第三十八页,共四十三页,2022年,8月28日第三十九页,共四十三页,2022年,8月28日线性卷积的FFT算法在MATLAB实现卷积的函数为CONV,对于N值较小的向量,这是十分有效的。对于N值较大的向量卷积可用FFT加快计算速度。由DFT性质可知,若DFT[x1(n)]=X1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年餐饮配送行业食品安全责任合同3篇
- 二零二五版综合安全解决方案与保安劳务合同2篇
- 二零二五版搬家服务与物流数据共享合同样本3篇
- 二零二五版房地产代理销售合同示范文本解读3篇
- 二零二五年度水上乐园供水及排水系统承包合同2篇
- 二零二五版影视制作合同:规定电影制作的流程与投资分配3篇
- 二零二五年度食堂物流配送服务合同2篇
- 二零二五年特种车辆销售与操作培训服务合同3篇
- 二零二五版体育场馆承包经营合同模板2篇
- 二零二五版宝钢职工社会保障配套合同3篇
- 2024年水利工程高级工程师理论考试题库(浓缩400题)
- 淋巴瘤病理诊断基础和进展周小鸽
- 增强现实技术在艺术教育中的应用
- TD/T 1060-2021 自然资源分等定级通则(正式版)
- 《创伤失血性休克中国急诊专家共识(2023)》解读
- 仓库智能化建设方案
- 海外市场开拓计划
- 供应链组织架构与职能设置
- 幼儿数学益智图形连线题100题(含完整答案)
- 七上-动点、动角问题12道好题-解析
- 2024年九省联考新高考 数学试卷(含答案解析)
评论
0/150
提交评论