版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《第22章二次函数》一、选择题1.在下列关系式中,y是x的二次函数的关系式是()A.2xy+x2=1 B.y2﹣ax+2=0 C.y+x2﹣2=0 D.x2﹣y2+4=02.设等边三角形的边长为x(x>0),面积为y,则y与x的函数关系式是()A.y=x2 B.y= C.y= D.y=3.已知抛物线y=x2﹣8x+c的顶点在x轴上,则c等于()A.4 B.8 C.﹣4 D.164.若直线y=ax+b不经过二、四象限,则抛物线y=ax2+bx+c()A.开口向上,对称轴是y轴 B.开口向下,对称轴是y轴C.开口向下,对称轴平行于y轴 D.开口向上,对称轴平行于y轴5.一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象大致是()A. B. C. D.6.已知抛物线y=﹣x2+mx+n的顶点坐标是(﹣1,﹣3),则m和n的值分别是()A.2,4 B.﹣2,﹣4 C.2,﹣4 D.﹣2,07.对于函数y=﹣x2+2x﹣2,使得y随x的增大而增大的x的取值范围是()A.x>﹣1 B.x≥0 C.x≤0 D.x<﹣18.抛物线y=x2﹣(m+2)x+3(m﹣1)与x轴()A.一定有两个交点 B.只有一个交点C.有两个或一个交点 D.没有交点9.二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,则m的值为()A.3 B.﹣3 C.3或﹣3 D.以上都不对10.对于任何的实数t,抛物线y=x2+(2﹣t)x+t总经过一个固定的点,这个点是()A.(1,0) B.(﹣1,0) C.(﹣1,3) D.(1,3)二、填空题11.抛物线y=﹣2x+x2+7的开口向______,对称轴是______,顶点是______.12.若二次函数y=mx2﹣3x+2m﹣m2的图象经过原点,则m=______.13.如果把抛物线y=2x2﹣1向左平移1个单位,同时向上平移4个单位,那么得到的新的抛物线是______.14.对于二次函数y=ax2,已知当x由1增加到2时,函数值减少4,则常数a的值是______.15.已知二次函数y=x2﹣6x+n的最小值为1,那么n的值是______.16.抛物线在y=x2﹣2x﹣3在x轴上截得的线段长度是______.17.设矩形窗户的周长为6m,则窗户面积S(m2)与窗户宽x(m)之间的函数关系式是______,自变量x的取值范围是______.18.设A、B、C三点依次分别是抛物线y=x2﹣2x﹣5与y轴的交点以及与x轴的两个交点,则△ABC的面积是______.19.抛物线上有三点(﹣2,3)、(2,﹣8)、(1,3),此抛物线的解析式为______.20.已知一个二次函数与x轴相交于A、B,与y轴相交于C,使得△ABC为直角三角形,这样的函数有许多,其中一个是______.三、解答题21.已知抛物线的顶点坐标为M(1,﹣2),且经过点N(2,3),求此二次函数的解析式.22.把抛物线y=ax2+bx+c向左平移2个单位,同时向下平移1个单位后,恰好与抛物线y=2x2+4x+1重合.请求出a,b,c的值.23.二次函数y=ax2+bx+c的图象的一部分如图,已知它的顶点M在第二象限,且经过点A(1,0)和点B(0,1).(1)请判断实数a的取值范围,并说明理由;(2)设此二次函数的图象与x轴的另一个交点为C,当△AMC的面积为△ABC面积的倍时,求a的值.24.对于抛物线y=x2+bx+c,给出以下陈述:①它的对称轴为x=2;②它与x轴有两个交点为A、B;③△APB的面积不小于27(P为抛物线的顶点).求①、②、③得以同时成立时,常数b、c的取值范围.25.分别写出函数y=x2+ax+3(﹣1≤x≤1)在常数a满足下列条件时的最小值:(l)0<a<;(2)a>.(提示:可以利用图象哦,最小值可用含有a的代数式表示)26.已知OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6,(1)如图甲:在OA上选取一点D,将△COD沿CD翻折,使点O落在BC边上,记为E.求折痕CD所在直线的解析式;(2)如图乙:在OC上选取一点F,将△AOF沿AF翻折,使点O落在BC边,记为G.①求折痕AF所在直线的解析式;②再作GH∥AB交AF于点H,若抛物线过点H,求此抛物线的解析式,并判断它与直线AF的公共点的个数.(3)如图丙:一般地,在以OA、OC上选取适当的点I、J,使纸片沿IJ翻折后,点O落在BC边上,记为K.请你猜想:①折痕IJ所在直线与第(2)题②中的抛物线会有几个公共点;②经过K作KL∥AB与IJ相交于L,则点L是否必定在抛物线上.将以上两项猜想在(l)的情形下分别进行验证.《第22章二次函数》参考答案一、选择题1.在下列关系式中,y是x的二次函数的关系式是()A.2xy+x2=1 B.y2﹣ax+2=0 C.y+x2﹣2=0 D.x2﹣y2+4=0【解答】解:A、2xy+x2=1当x≠0时,可化为y=的形式,不符合一元二次方程的一般形式,故本选项错误;B、y2﹣ax+2=0可化为y2=ax﹣2不符合一元二次方程的一般形式,故本选项错误;C、y+x2﹣2=0可化为y=x2+2,符合一元二次方程的一般形式,故本选项正确;D、x2﹣y2+4=0可化为y2=x2+4的形式,不符合一元二次方程的一般形式,故本选项错误.故选C.2.设等边三角形的边长为x(x>0),面积为y,则y与x的函数关系式是()A.y=x2 B.y= C.y= D.y=【解答】解:作出BC边上的高AD.∵△ABC是等边三角形,边长为x,∴CD=x,∴高为h=x,∴y=x×h=x2.故选:D.3.已知抛物线y=x2﹣8x+c的顶点在x轴上,则c等于()A.4 B.8 C.﹣4 D.16【解答】解:根据题意,得=0,解得c=16.故选D.4.若直线y=ax+b不经过二、四象限,则抛物线y=ax2+bx+c()A.开口向上,对称轴是y轴 B.开口向下,对称轴是y轴C.开口向下,对称轴平行于y轴 D.开口向上,对称轴平行于y轴【解答】解:∵直线y=ax+b不经过二、四象限,∴a>0,b=0,则抛物线y=ax2+bx+c开口方向向上,对称轴x==0.故选A.5.一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象大致是()A. B. C. D.【解答】解:A、由一次函数y=ax+b的图象可得:a>0,此时二次函数y=ax2+bx+c的图象应该开口向上,错误;B、由一次函数y=ax+b的图象可得:a>0,b>0,此时二次函数y=ax2+bx+c的图象应该开口向上,对称轴x=﹣<0,错误;C、由一次函数y=ax+b的图象可得:a<0,b<0,此时二次函数y=ax2+bx+c的图象应该开口向下,对称轴x=﹣<0,正确.D、由一次函数y=ax+b的图象可得:a<0,b<0,此时二次函数y=ax2+bx+c的图象应该开口向下,错误;故选C.6.已知抛物线y=﹣x2+mx+n的顶点坐标是(﹣1,﹣3),则m和n的值分别是()A.2,4 B.﹣2,﹣4 C.2,﹣4 D.﹣2,0【解答】解:根据顶点坐标公式,得横坐标为:=﹣1,解得m=﹣2;纵坐标为:=﹣3,解得n=﹣4.故选B.7.对于函数y=﹣x2+2x﹣2,使得y随x的增大而增大的x的取值范围是()A.x>﹣1 B.x≥0 C.x≤0 D.x<﹣1【解答】解:∵y=﹣x2+2x﹣2=﹣(x﹣1)2﹣1,a=﹣1<0,抛物线开口向下,对称轴为直线x=1,∴当x≤1时,y随x的增大而增大,故只有选项C,D这两个范围符合要求,又因为C选项范围包括选项D的范围,故选:C.8.抛物线y=x2﹣(m+2)x+3(m﹣1)与x轴()A.一定有两个交点 B.只有一个交点C.有两个或一个交点 D.没有交点【解答】解:根据题意,得△=b2﹣4ac=<﹣(m+2)>2﹣4×1×3(m﹣1)=(m﹣4)2(1)当m=4时,△=0,即与x轴有一个交点;(2)当m≠4时,△>0,即与x轴有两个交点;所以,原函数与x轴有一个交点或两个交点,故选C.9.二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,则m的值为()A.3 B.﹣3 C.3或﹣3 D.以上都不对【解答】解:∵二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,∴x12+x22=(x1+x2)2﹣2x1x2=﹣2×(﹣)=,解得:m=±3,故选:C.10.对于任何的实数t,抛物线y=x2+(2﹣t)x+t总经过一个固定的点,这个点是()A.(1,0) B.(﹣1,0) C.(﹣1,3) D.(1,3)【解答】解:把y=x2+(2﹣t)x+t变形得到(1﹣x)t=y﹣x2﹣2x,∵对于任何的实数t,抛物线y=x2+(2﹣t)x+t总经过一个固定的点,∴1﹣x=0且y﹣x2﹣2x=0,∴x=1,y=3,即这个固定的点的坐标为(1,3).故选D.二、填空题11.抛物线y=﹣2x+x2+7的开口向上,对称轴是x=1,顶点是(1,6).【解答】解:∵y=x2﹣2x+7=(x﹣1)2+6,∴二次项系数a=1>0,抛物线开口向上,顶点坐标为(1,6),对称轴为直线x=1.故答案为:上,x=1,(1,6).12.若二次函数y=mx2﹣3x+2m﹣m2的图象经过原点,则m=2.【解答】解:由于二次函数y=mx2﹣3x+2m﹣m2的图象经过原点,代入(0,0)得:2m﹣m2=0,解得:m=2,m=0;又∵m≠0,∴m=2.故答案为:2.13.如果把抛物线y=2x2﹣1向左平移1个单位,同时向上平移4个单位,那么得到的新的抛物线是y=2(x+1)2+3.【解答】解:原抛物线的顶点为(0,﹣1),向左平移1个单位,同时向上平移4个单位,那么新抛物线的顶点为(﹣1,3);可设新抛物线的解析式为y=2(x﹣h)2+k,代入得:y=2(x+1)2+3.14.对于二次函数y=ax2,已知当x由1增加到2时,函数值减少4,则常数a的值是﹣.【解答】解:当x=1时,y=ax2=a;当x=2时,y=ax2=4a,所以a﹣4a=4,解得a=﹣.故答案为:﹣.15.已知二次函数y=x2﹣6x+n的最小值为1,那么n的值是10.【解答】解:原式可化为:y=(x﹣3)2﹣9+n,∵函数的最小值是1,∴﹣9+n=1,n=10.故答案为:10.16.抛物线在y=x2﹣2x﹣3在x轴上截得的线段长度是4.【解答】解:设抛物线与x轴的交点为:(x1,0),(x2,0),∵x1+x2=2,x1•x2=﹣3,∴|x1﹣x2|===4,∴抛物线在y=x2﹣2x﹣3在x轴上截得的线段长度是4.故答案为:4.17.设矩形窗户的周长为6m,则窗户面积S(m2)与窗户宽x(m)之间的函数关系式是S=﹣x2+3x,自变量x的取值范围是0<x<3.【解答】解:由题意可得:S=x(3﹣x)=﹣x2+3x.自变量x的取值范围是:0<x<3.故答案为:S=﹣x2+3x,0<x<3.18.设A、B、C三点依次分别是抛物线y=x2﹣2x﹣5与y轴的交点以及与x轴的两个交点,则△ABC的面积是5.【解答】解:令x=0,则y=﹣5,即A(0,﹣5);设B(b,0),C(c,0).令y=0,则x2﹣2x﹣5=0,则b+c=2,bc=﹣5,则|b﹣c|===2,则△ABC的面积是×5×=5.故答案为5.19.抛物线上有三点(﹣2,3)、(2,﹣8)、(1,3),此抛物线的解析式为y=﹣x2﹣x+.【解答】解:设此抛物线的解析式为y=ax2+bx+c,把点(﹣2,3)、(2,﹣8)、(1,3)代入得,解得.所以此抛物线的解析式为y=﹣x2﹣x+,故答案为:y=﹣x2﹣x+.20.已知一个二次函数与x轴相交于A、B,与y轴相交于C,使得△ABC为直角三角形,这样的函数有许多,其中一个是y=﹣x2+3.【解答】解:如图所示:当抛物线过点A(﹣3,0),B(3,0),C(0,3),则设抛物线解析式为:y=ax2+3,故0=9a+3,解得:a=﹣,即抛物线解析式为:y=﹣x2+3.故答案为:y=﹣x2+3.三、解答题21.已知抛物线的顶点坐标为M(1,﹣2),且经过点N(2,3),求此二次函数的解析式.【解答】解:已知抛物线的顶点坐标为M(1,﹣2),设此二次函数的解析式为y=a(x﹣1)2﹣2,把点(2,3)代入解析式,得:a﹣2=3,即a=5,∴此函数的解析式为y=5(x﹣1)2﹣2.22.把抛物线y=ax2+bx+c向左平移2个单位,同时向下平移1个单位后,恰好与抛物线y=2x2+4x+1重合.请求出a,b,c的值.【解答】解:将y=2x2+4x+1整理得y=2x2+4x+1=2(x+1)2﹣1.因为抛物线y=ax2+bx+c向左平移2个单位,再向下平移1个单位得y=2x2+4x+1=2(x+1)2﹣1,所以将y=2x2+4x+1=2(x+1)2﹣1向右平移2个单位,再向上平移1个单位即得y=ax2+bx+c,故y=ax2+bx+c=2(x+1﹣2)﹣1+1=2(x﹣1)=2x2﹣4x+2,所以a=2,b=﹣4,c=2.23.二次函数y=ax2+bx+c的图象的一部分如图,已知它的顶点M在第二象限,且经过点A(1,0)和点B(0,1).(1)请判断实数a的取值范围,并说明理由;(2)设此二次函数的图象与x轴的另一个交点为C,当△AMC的面积为△ABC面积的倍时,求a的值.【解答】解:(1)由图象可知:a<0图象过点(0,1),所以c=1,图象过点(1,0),则a+b+1=0当x=﹣1时,应有y>0,则a﹣b+1>0将a+b+1=0代入,可得a+(a+1)+1>0,解得a>﹣1所以,实数a的取值范围为﹣1<a<0;(2)此时函数y=ax2﹣(a+1)x+1,M点纵坐标为:=,图象与x轴交点坐标为:ax2﹣(a+1)x+1=0,解得;x1=1,x2=,则AC=1﹣=,要使S△AMC=××==S△ABC=•可求得a=.24.对于抛物线y=x2+bx+c,给出以下陈述:①它的对称轴为x=2;②它与x轴有两个交点为A、B;③△APB的面积不小于27(P为抛物线的顶点).求①、②、③得以同时成立时,常数b、c的取值范围.【解答】解:∵抛物线y=x2+bx+c=(x+)2+,抛物线y=x2+bx+c的对称轴为x=2,∴﹣=2,则b=﹣4,∴P点的纵坐标是=c﹣4,又∵它与x轴有两个交点为A、B,∴△=b2﹣4ac=16﹣4c>0,且AB===2解得c<4,①又△APB的面积不小于27,∴×2×|c﹣16|≥27,即×|c﹣16|≥27②由①②解得c≤﹣5.综上所述,b的值是﹣4,c的取值范围是c≤﹣5.25.分别写出函数y=x2+ax+3(﹣1≤x≤1)在常数a满足下列条件时的最小值:(l)0<a<;(2)a>.(提示:可以利用图象哦,最小值可用含有a的代数式表示)【解答】解:对称轴x=﹣=﹣,(1)当0<a<时,即﹣<﹣<0,当x=﹣时有最小值,最小值y=(﹣)2+a×(﹣)+3=3,(2)当a>.即﹣<﹣,在﹣1≤x≤1范围内,y随x的增大而增大,当x=﹣1时,y最小,最小值y=(﹣1)2+a×(﹣1)+3=4﹣a.26.已知OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6,(1)如图甲:在OA上选取一点D,将△COD沿CD翻折,使点O落在BC边上,记为E.求折痕CD所在直线的解析式;(2)如图乙:在OC上选取一点F,将△AOF沿AF翻折,使点O落在BC边,记为G.①求折痕AF所在直线的解析式;②再作GH∥AB交AF于点H,若抛物线过点H,求此抛物线的解析式,并判断它与直线AF的公共点的个数.(3)如图丙:一般地,在以OA、OC上选取适当的点I、J,使纸片沿IJ翻折后,点O落在BC边上,记为K.请你猜想:①折痕IJ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电气工程师的工作总结
- 2025年度商业写字楼车位使用权转让合同模板
- 二零二五年度大型商场消防工程验收及安全评估合同3篇
- 二零二五年度个人消费信贷合同模板8篇
- 二零二五年度青少年户外夏令营活动参加协议3篇
- 二零二五版房地产售后服务居间合同范本
- 二零二五年度个人房产买卖合同终止协议3篇
- 二零二五年度钢材采购与供应合同范本
- 二零二五年度深海探测设备制造个人工劳务分包合同4篇
- 二零二五年度离婚探望权协议范本与子女监护权规定3篇
- 给排水科学与工程基础知识单选题100道及答案解析
- 2024年土地变更调查培训
- 2024年全国外贸单证员鉴定理论试题库(含答案)
- 新版中国食物成分表
- 《财务管理学(第10版)》课件 第5、6章 长期筹资方式、资本结构决策
- 房屋永久居住权合同模板
- 初中英语不规则动词表(译林版-中英)
- 2024年3月四川省公务员考试面试题及参考答案
- 新生儿黄疸早期识别课件
- 医药营销团队建设与管理
- 二年级数学上册口算题100道(全册完整)
评论
0/150
提交评论