版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGEPAGE7平面与平面平行的判定【课时目标】1.理解平面与平面平行的判定定理的含义.2.能运用平面与平面平行的判定定理,证明一些空间面面平行的简单问题.1.平面α与平面β平行是指两平面________公共点.若α∥β,直线a⊂α,则a与β的位置关系为________.2.下面的命题在“________”处缺少一个条件,补上这个条件,使其构成真命题(M,n为直线,α,β为平面),则此条件应为________.eq\b\lc\\rc\}(\a\vs4\al\co1(m⊂α,n⊂α,m∥β,n∥β,))⇒α∥β一、选择题1.经过平面α外的两个点作该平面的平行平面,可以作出()A.0个B.1个C.0个或1个D.1个或2个2.α和β是两个不重合的平面,在下列条件中,可判定α∥β的是()A.α内有无数条直线平行于βB.α内不共线三点到β的距离相等C.l、M是平面α内的直线,且l∥α,M∥βD.l、M是异面直线且l∥α,M∥α,l∥β,M∥β3.给出下列结论,正确的有()①平行于同一条直线的两个平面平行;②平行于同一平面的两个平面平行;③过平面外两点,不能作一个平面与已知平面平行;④若a,b为异面直线,则过a与b平行的平面只有一个.A.1个B.2个C.3个D.4个4.若不在同一直线上的三点A、B、C到平面α的距离相等,且AD/∈α,则()A.α∥平面ABCB.△ABC中至少有一边平行于αC.△ABC中至多有两边平行于αD.△ABC中只可能有一边与α相交5.正方体EFGH—E1F1G1A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1C.平面F1H1H与平面FHE1D.平面E1HG1与平面EH16.两个平面平行的条件是()A.一个平面内一条直线平行于另一个平面B.一个平面内两条直线平行于另一个平面C.一个平面内的任意一条直线平行于另一个平面D.两个平面都平行于同一条直线二、填空题7.已知直线a、b,平面α、β,且a∥b,a∥α,α∥β,则直线b与平面β的位置关系为______.8.有下列几个命题:①平面α内有无数个点到平面β的距离相等,则α∥β;②α∩γ=a,α∩β=b,且a∥b(α,β,γ分别表示平面,a,b表示直线),则γ∥β;③平面α内一个三角形三边分别平行于平面β内的一个三角形的三条边,则α∥β;④平面α内的一个平行四边形的两边与平面β内的一个平行四边形的两边对应平行,则α∥β.其中正确的有________.(填序号)9.如图所示,在正方体ABCD—A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足________时,有MN∥平面B1BDD1.三、解答题10.如图所示,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E、F、G分别是BC、DC和SC的中点.求证:平面EFG∥平面BDD1B111.如图所示,B为△ACD所在平面外一点,M,N,G分别为△ABC,△ABD,△BCD的重心.(1)求证:平面MNG∥平面ACD;(2)求S△MNG∶S△ADC.能力提升12.三棱柱ABC-A1B1C1,D是BC上一点,且A1B∥平面AC1D,D1是B1C求证:平面A1BD1∥平面AC1D.13.如图所示,在正方体ABCD—A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ∥判定或证明面面平行的方法(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行;(3)两个平面同时平行于第三个平面,那么这两个平面平行.2.2.2平面与平面平行的判定答案知识梳理1.无a∥β2.M,n相交作业设计1.C2.D3.B4.B5.A6.C7.b∥β或b⊂β8.③解析①不正确,当两平面相交时,在一个平面两侧分别有无数点满足条件;②不正确,当平面β与γ相交时也可满足条件;③正确,满足平面平行的判定定理;④不正确,当两平面相交时,也可满足条件.9.M∈线段FH解析∵HN∥BD,HF∥DD1,HN∩HF=H,BD∩DD1=D,∴平面NHF∥平面B1BDD1,故线段FH上任意点M与N连接,有MN∥平面B1BDD1.10.证明如图所示,连接SB,SD,∵F、G分别是DC、SC的中点,∴FG∥SD.又∵SD⊂平面BDD1B1,FG⊄平面BDD1B1,∴直线FG∥平面BDD1B1.同理可证EG∥平面BDD1B1,又∵EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面BDD1B1.11.(1)证明(1)连接BM,BN,BG并延长分别交AC,AD,CD于P,F,H.∵M,N,G分别为△ABC,△ABD,△BCD的重心,则有eq\f(BM,MP)=eq\f(BN,NF)=eq\f(BG,GH)=2,且P,H,F分别为AC,CD,AD的中点.连接PF,FH,PH,有MN∥PF.又PF⊂平面ACD,MN⊄平面ACD,∴MN∥平面ACD.同理MG∥平面ACD,MG∩MN=M,∴平面MNG∥平面ACD.(2)解由(1)可知eq\f(MG,PH)=eq\f(BG,BH)=eq\f(2,3),∴MG=eq\f(2,3)PH.又PH=eq\f(1,2)AD,∴MG=eq\f(1,3)AD.同理NG=eq\f(1,3)AC,MN=eq\f(1,3)CD.∴△MNG∽△ACD,其相似比为1∶3.∴S△MNG∶S△ACD=1∶9.12.证明连接A1C交AC1∵四边形A1ACC1是平行四边形,∴E是A1C∵A1B∥平面AC1D,ED⊂平面AC1D,∴A1B与ED没有交点,又∵ED⊂平面A1BC,A1B⊂平面A1BC,∴ED∥A1B.∵E是A1C的中点,∴又∵D1是B1C1∴BD1∥C1D,A1D1∥AD,∴BD1∥平面AC1D,A1D1∥平面AC1D.又A1D1∩BD1=D1,∴平面A1BD1∥
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生态园区餐厅招投标方案
- 文化石匠施工合同
- 城市绿化聘用合同证明
- 城市绿化设施消火栓施工合同
- 通辽市物业紧急疏散演练方案
- 如何做好离职面谈计划
- 城市商业广场建设合同三篇
- 急诊药物过敏反应的管理计划
- 中药专业论证报告
- 高中生青春国旗下演讲稿【七篇】
- 安徽省合肥市包河区2023-2024学年三年级上学期语文期末试卷
- 【MOOC】新媒体文化十二讲-暨南大学 中国大学慕课MOOC答案
- 2024-2025学年二年级数学上册期末乐考非纸笔测试题(二 )(苏教版)
- 2024年度智能制造生产线改造项目合同
- 北京市西城区2023-2024学年六年级上学期语文期末试卷
- 2025年蛇年年会汇报年终总结大会模板
- 九年级学业水平-信息技术考试试题题库及答案
- GA 1804-2022危险化学品生产企业反恐怖防范要求
- 华为性格测试攻略
- 河南省建筑业诚信劳务企业评价办法(试行)
- 压力管道安装机械设备操作规程讲解
评论
0/150
提交评论